ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Chemist Designs Diabetic Treatment Minus Harmful Side Effects

Thursday, February 8, 2018, By Rob Enslin
Share
College of Arts and SciencesfacultyResearch and CreativeSTEM

A chemist in the (A&S) has figured out how to control glucose levels in the bloodstream without the usual side effects of nausea, vomiting or malaise.

3D illustration of the pancreas secreting insulin

A 3D illustration of the pancreas secreting insulin (sciencepics/Shutterstock.com)

, the Laura J. and L. Douglas Meredith Professor of Teaching Excellence and professor of chemistry, is the inventor of a new compound that triggers the secretion of insulin in the pancreas without associated nausea. Working with colleagues at the University of Pennsylvania (Penn), the Seattle Children’s Hospital and SUNY Upstate Medical University, he has designed a conjugate of vitamin B12 that is bound to an FDA-approved drug known as Ex4.

Doyle expects his compound, called B12-Ex4, to offer a broader scope of available treatment options for diabetes because of its ability to improve glucose tolerance without the associated side effects.

His findings are part of a groundbreaking paper he has co-authored in (John Wiley & Sons, 2018). A related paper of his addressing glucoregulation and appetite suppression is scheduled to run in Scientific Reports (Nature Publishing Group, 2018).

“This represents an interesting new paradigm for the treatment of Type 2 diabetes, using so-called GLP1-R agonist drugs, which make up a multi-billion dollar industry,” says Doyle, also an associate professor of medicine at SUNY Upstate. “Our findings highlight the potential clinical utility of B12-Ex4 conjugates as therapeutics to treat Type 2 diabetes, with reduced incidence of adverse effects.”

Type 2 diabetes is marked by increased levels of glucose in the blood or urine, when the body is unable to use or produce enough insulin. Long-term complications include eye, kidney or nerve damage; heart attack or stroke; or problems with the wound-healing process.

Doyle’s discovery stems from his work with exenatide, a drug that causes the pancreas to secrete insulin when glucose levels are high. (Insulin is a hormone that moves glucose from the blood to various cells and tissues, where the sugar turns into energy.) Used to treat Type 2 diabetes, exenatide is part of a large class of medications called incretin mimetics. These injectable drugs bind to glucagon-like peptide receptors (GLP1-R) to stimulate the release of insulin.

A drawback of exenatide is that GLP1-R is found in the pancreas and brain. Stimulating the receptor in the pancreas leads to positive aspects of glucose control, but doing so in the hypothalamus (the part of the brain coordinating the nervous system and pituitary gland) causes malaise and nausea.

“We were able to mitigate the side effects of exenatide by preventing it from entering the brain, while allowing it to penetrate other areas of the body, such as the pancreas,” says Doyle, whose research focuses on the chemistry of B12, exploiting its properties and dietary pathway for drug delivery. “Our ability to ‘fix’ Ex-4 as a proof of concept could impact obesity and cancer treatment, since we can use our drug system to prevent or modulate central nervous system [CNS]-mediated side effects. In the case of Ex-4, this [side effect] was chronic nausea.”

Robert Doyle

Robert Doyle

Critical to Doyle’s research are GLP-1R agonists—synthetic, peptide-based chemicals that bind to organs or cells, causing them to produce a biological response. These peptide conjugates of insulin are the only known hormones able to decrease blood-sugar levels by enhancing the secretion of insulin. They do this by reducing food intake and body weight.

Doyle says these drugs are effective for treating obesity, but many Type 2 diabetics are not obese or overweight: “In fact, they should avoid losing weight altogether.”

Add to that the prevalence of nausea or vomiting, and the chances of skipping doses or discontinuing treatment increase considerably. “These adverse effects are surprisingly under-investigated, and they limit the full, widespread use and efficacy of GLP-1R agonists for the treatment of metabolic disease,” he continues.

In response to critical need, Doyle’s lab has spearheaded the development of a next-generation incretin therapeutic that controls blood sugar without causing a reduction in food intake or change in eating behavior. “This method of conjugation is ideal for the future treatment of Type 2 diabetes,” says Doyle, adding that ϲ owns the patent on this work. “It also may be broadly beneficial to other therapeutics that would benefit from reduced CNS penetrance.”

Doyle collaborated with Matthew Hayes, associate professor of neuroscience in the Department of Psychiatry in Penn’s Perelman School of Medicine, in the project’s experimental design and execution.

Since joining ϲ’s faculty in 2005, Doyle has become a rising star in medicinal chemistry. His broad background in synthetic chemistry, drug delivery and protein biochemistry underscores his cross-cutting research, which has received support from multiple sources, including the National Institutes of Health, the American Chemical Society, the Serum Foundation and various industry partners.

About ϲ

Founded in 1870, ϲ is a private international research university dedicated to advancing knowledge and fostering student success through teaching excellence, rigorous scholarship and interdisciplinary research. Comprising 11 academic schools and colleges, the University has a long legacy of excellence in the liberal arts, sciences and professional disciplines that prepares students for the complex challenges and emerging opportunities of a rapidly changing world. Students enjoy the resources of a 270-acre main campus and extended campus venues in major national metropolitan hubs and across three continents. ϲ’s student body is among the most diverse for an institution of its kind across multiple dimensions, and students typically represent all 50 states and more than 100 countries. ϲ also has a long legacy of supporting veterans and is home to the nationally recognized Institute for Veterans and Military Families, the first university-based institute in the U.S. focused on addressing the unique needs of veterans and their families.

  • Author

Rob Enslin

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.