ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Investigating Shocks to the System, Fardad Receives CAREER Award

Friday, April 27, 2018, By Matt Wheeler
Share
AwardsCollege of Engineering and Computer Sciencefaculty
Makan Fardad

Makan Fardad

On an average day in India not so long ago, the circuit breakers on a single powerline got tripped. That caused the breakers on another line to go down. Then another. Then another. It happened again and again throughout the power grid, leaving more than 300 million people in the dark for 15 hours.

A few years later on a highway in China, construction and a spike in traffic created some congestion heading to Beijing. Fender benders followed. A few cars broke down. The situation descended into a major traffic jam that stretched for 100 kilometers and lasted for 10 days.

These scenarios were unrelated, but they had one key thing in common—small failures snowballed into full-blown catastrophes.

In his National Science Foundation CAREER Award-winning proposal, “A Scalable Optimization-Based Framework for Modeling and Analysis of Cascading Failures,”is tackling these cascading failures by developing a mathematical framework toexpose the fragilities that exist within infrastructure networks so that they can be amended before causing large-scale failures.

 

  • 01
    With all our technology, how do minor faults turn into such big problems?

    Normally these networks are stable. They can deal withmostdisturbances and shocks—even big ones. But, they are still vulnerable tosomedisturbances, shocks and failures. If we know where to look, we can find fragilities that would allow even small shocks to destabilize the network, build momentum and become massively amplified and propagated by the network’s natural dynamics.

    In India’s blackout and China’s traffic jam, the initial failures most likely had natural causes, like weather or human error, which are unavoidable. We can only aim to identify networks’ weak spots and strengthen them before they create a cascading failure.

    This is especially important today because technology hasalso democratized access to sensitive infrastructure, and that can allow malicious groups to target our networks with the intention of doing harm, for example through cyberattacks.

  • 02
    Is it fair to say that this “snowball effect” begins with a single “snowflake?”

    Sometimes, yes. But, there generally is a combinatorial aspect to these problems. Often, it ismultipleweak spots failing together that cause the larger system to fail. My research team is interested in finding the most consequential failures in the network.

    While individual shocks may never initiate a cascade, if chosen wisely, multiple shocks together will push the network over the edge and past the tipping point. But it is not feasible to check all combinations of shock locations in a large network. There are just too many possibilities, so another part of my research is to devise computationally scalable optimization algorithms to tackle this.

  • 03
    What motivated you to work on this problem?

    I find this type of unexpected behavior in systems incredibly intriguing. I also enjoy tackling these problems from a theoretical standpoint. Networks that demonstrate cascading behavior are generally mathematically challenging to analyze.

    I first decided to study this field when I became fascinated by cascading behavior in social networks, such as the propagation of social contagion, the spread of rumors and misinformation, and the promotion of positive social change and collective action. This was before the days of the #MeToo movement, but I can think of no better example today.

    Back then, I wondered how the self-immolation of a 26-year-old Tunisian street vendor sparked protests that led to a wave of uprisings that spread across 13 countries in North Africa and the Middle East to become the Arab Spring.

    It’s amazing how a single event can snowball into something substantial.

    About ϲ

    ϲ is a private, international research university with distinctive academics, diversely unique offerings and anundeniable spirit. Located in the geographic , with a global footprint, and, ϲ offers a quintessential college experience. The scope of ϲ is a testament to its strengths: a pioneering history dating back to 1870; a choice of more than 200 majors and 100 minors offered through 13 schools and colleges; nearly 15,000 undergraduates and 5,000 graduate students; more than a quarter of a million alumni in 160 countries; and a student population from all 50 U.S. states and 123 countries. For more information, please visit .

  • Author

Matt Wheeler

  • Recent
  • School of Education Launches Fully Inclusive Study Abroad Experience in Italy
    Monday, July 14, 2025, By Cecelia Dain
  • LaunchPad Awards Student Start-Up Fund Grant
    Saturday, July 12, 2025, By Cristina Hatem
  • Class of ’25 College of Law Graduate to Be Inducted Into the U.S. Olympic Hall Of Fame
    Saturday, July 12, 2025, By Caroline K. Reff
  • Empowering Learners With Personalized Microcredentials, Stackable Badges
    Thursday, July 3, 2025, By Hope Alvarez
  • WISE Women’s Business Center Awarded Grant From Empire State Development, Celebrates Entrepreneur of the Year Award
    Thursday, July 3, 2025, By Dawn McWilliams

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching atCERN’s Large Hadron Collider. The Big Bang createdequal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.