黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

SU researchers utilize computer simulations to explore biofilm fragmentation

Monday, September 20, 2010, By News Staff
Share
Research and Creative

黑料不打烊鈥檚 Radhakrishna Sureshkumar, professor and chair of the Department of Biomedical and Chemical Engineering in the (LCS), and professor of physics in , has been awarded a three-year, $426,290 grant by the National Science Foundation (NSF) to investigate how biofilms deform and break up under mechanical stress. Biofilms are colonies of bacterial microorganisms that build up on surfaces and usually result in damage, decay or inefficiencies.

biofilmWhen planktonic or swimming bacterial microorganisms attach themselves to a surface, they secrete polysaccharides, creating a matrix of slimy polymers. There are numerous types of biofilms that are created by different phenotypes of bacteria. One bacterial type is responsible for the plaque that builds up on teeth, while another type builds up on the surface of Navy vessels, which creates additional drag and power loss as they sail through the seas. Bacteria can also colonize in arteries and lungs, leading to life-threatening infections. Biofilms are extremely resistant to antibiotics, as compared to planktonic bacteria.

Sureshkumar, in collaboration with the engineering and medical schools at the University of Michigan, Ann Arbor聽and the University of Colorado, Boulder聽will be utilizing innovative computer simulations to understand at the molecular level the mechanical properties, or biomechanics, of different phenotypes of bacteria. The team will be studying the genetic makeup of the organism and how it relates to the mechanical properties of the type of biofilm it creates.

This project is a cross-disciplinary and collaborative effort to explore biofilms. The SU team of Sureshkumar and research assistant professor Shikha Nangia will be exploring biofilms through computer simulations. Simultaneously, David Bortz of the University of Colorado will be examining biofilms through mathematical modeling. Mike Solomon and John Younger of the University of Michigan will be performing experiments in the same area.

The goal is to provide a transformative understanding of how the complex system of biofilms responds to mechanical stimulus, such as the one resulting from arterial blood flow. The team will utilize the fundamental insights gleaned from the study to develop efficient therapeutic routes to treat bacterial infection.

鈥淚 am very pleased that the parallel computer cluster that will be the primary workhorse for this project is housed in SU鈥檚 Green Data Center,鈥 says Sureshkumar. 鈥淔urther, through a mutual agreement to share laboratory resources, we will leverage the computational facilities at the Brookhaven National Laboratory that have been made available to SU faculty. Such state-of-the-art facilities are critical to the success of cyber-enabled discovery and innovation.鈥

The LCS team of researchers led by Sureshkumar includes Nangia, graduate student Rui Li and undergraduate student Adina Dragici.

  • Author

News Staff

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America鈥檚 Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun 鈥淛ensen鈥 Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences聽(A&S), a logic minor in A&S and a member of the Ren茅e Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor聽Bing Dong聽was recently selected to lead a workshop on artificial intelligence (AI) at聽NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning聽and聽AI聽research. Dong鈥檚 workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at聽CERN’s Large Hadron Collider. The Big Bang created聽equal amounts of matter and antimatter, but now nearly everything鈥攕olid, liquid, gas or plasma鈥攊s…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.