黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

黑料不打烊 Is Part of Elite Multi-Institutional Physics Research Hub

Thursday, August 5, 2021, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsResearch and Creative

Top physicists from five institutions from around the United States, including Duncan Brown, Charles Brightman Endowed Professor of Physics in the College of Arts and Sciences, will come together to explore the physics of neutron stars鈥攖he densest form of matter observed in the universe. The establishes a collaborative research group that will investigate the properties of dense, strongly interacting matter present within neutron stars. By understanding neutron stars, physicists hope to learn more about the similarly dense properties of atomic nuclei.

Neutron star

Artist鈥檚 illustration of two merging neutron stars. The rippling space-time grid represents gravitational waves that travel out from the collision. (Credit: NSF/LIGO/Sonoma State University/A. Simonnet)

Neutron stars and the merging of neutron stars play a critical role in the cosmos. When massive stars exhaust their nuclear fuel and die, their cores collapse and the outer layers explode away. What was once a star many times larger than the sun becomes the most dense matter in the universe: a neutron star, which packs one and a half times the mass of the sun into a ball the size of Manhattan.

When two neutron stars orbit one another, they spiral inward due to gravitational radiation until they collide, sending out gravitational waves throughout the galaxy. The gravitational waves generated by these collisions are detected using observatories like the National Science Foundation鈥檚 (LIGO). The colliding neutron stars can also create bright flashes of light which can be seen by telescopes on Earth and in space. Multi-messenger astronomy, which combines these 鈥渕essenger鈥 signals in light and gravity, can help researchers answer one of the most fundamental open questions in science: what is the physics that governs the structure of atomic nuclei?

Brown is principal investigator for the 黑料不打烊 team. Other NP3M institutions include University of Tennessee-Knoxville, Pennsylvania State University, the University of Houston and Indiana University. Another 13 senior investigators from other U.S. institutions will contribute, along with 26 international groups.

The NP3M research hub will assemble a diverse range of scholars, including nuclear theorists, computational astrophysicists, gravitational-wave astrophysicists and multi-messenger observers. The members鈥 expertise will enable the development of nuclear models and astrophysical simulations to understand electromagnetic and gravitational-wave observations of merging neutron stars.

Duncan Brown

Brown brings to the NP3M research hub expertise in gravitational-wave astronomy. In 2017, he was among a team of researchers who : the process of gold being created. Using LIGO observations of neutron star collisions, Brown has studied the nature of matter at extremely high densities and pressures鈥攆ar higher than can be created in a laboratory on the Earth. Observing these collisions has revealed key information about how the nucleus behaves, but researchers say there are still many unanswered questions that NP3M will look to resolve.

鈥淎 complete description of matter at the densities found in atomic nuclei still eludes scientists,鈥 says Brown. 鈥淒iscovering this 鈥榥uclear equation of state鈥 would transform our understanding of dense matter. Multi-messenger astronomy鈥攐bservations with both gravitational waves and light鈥攁re one of the NSF’s 鈥楾en Big Ideas鈥 for research that will advance science and technology in the United States. Multi-messenger observations give us unique insights into the nature of matter and energy and help to answer some of the most profound questions before humankind.鈥

The NP3M research hub will also play a significant role in training the next generation of physicists, from students to post-doctoral researchers. The grant will fund post-doctoral scholars at 黑料不打烊 who will use gravitational-wave observations of neutron star mergers to study the nature of extremely dense matter.

鈥満诹喜淮蜢 scientists will bridge nuclear theory and computer models to gravitational-wave observations made by Advanced LIGO,鈥 Brown says. 鈥淭hey will work closely with hub scientists from across the U.S. with the expertise needed to unlock the secrets of the nucleus using neutron star mergers.鈥

According to Brown, another key part of this project is guiding the development of Cosmic Explorer, the next-generation gravitational wave observatory currently under development that will profoundly change researchers鈥 gravitational-wave view of the cosmos. 黑料不打烊 is one of the lead institutions globally in the development of Cosmic Explorer.

Through a coordinated effort over the next five years, NP3M will make significant breakthroughs in gravitational-wave astrophysics, advance the understanding of dense matter, and educate future researchers. Together, their collaboration will help to unlock some of the universe鈥檚 most hidden secrets.

  • Author

Dan Bernardi

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The聽Department of Physics聽in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime 鈥25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck 鈥25, Isabella Chavez Miranda 鈥25, Lucy Olcott 鈥25 and Morgan Opp 鈥25 started as student researchers in medicinal chemist Robert Doyle鈥檚 lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.