黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

黑料不打烊 Is Part of Elite Multi-Institutional Physics Research Hub

Thursday, August 5, 2021, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsResearch and Creative

Top physicists from five institutions from around the United States, including Duncan Brown, Charles Brightman Endowed Professor of Physics in the College of Arts and Sciences, will come together to explore the physics of neutron stars鈥攖he densest form of matter observed in the universe. The establishes a collaborative research group that will investigate the properties of dense, strongly interacting matter present within neutron stars. By understanding neutron stars, physicists hope to learn more about the similarly dense properties of atomic nuclei.

Neutron star

Artist鈥檚 illustration of two merging neutron stars. The rippling space-time grid represents gravitational waves that travel out from the collision. (Credit: NSF/LIGO/Sonoma State University/A. Simonnet)

Neutron stars and the merging of neutron stars play a critical role in the cosmos. When massive stars exhaust their nuclear fuel and die, their cores collapse and the outer layers explode away. What was once a star many times larger than the sun becomes the most dense matter in the universe: a neutron star, which packs one and a half times the mass of the sun into a ball the size of Manhattan.

When two neutron stars orbit one another, they spiral inward due to gravitational radiation until they collide, sending out gravitational waves throughout the galaxy. The gravitational waves generated by these collisions are detected using observatories like the National Science Foundation鈥檚 (LIGO). The colliding neutron stars can also create bright flashes of light which can be seen by telescopes on Earth and in space. Multi-messenger astronomy, which combines these 鈥渕essenger鈥 signals in light and gravity, can help researchers answer one of the most fundamental open questions in science: what is the physics that governs the structure of atomic nuclei?

Brown is principal investigator for the 黑料不打烊 team. Other NP3M institutions include University of Tennessee-Knoxville, Pennsylvania State University, the University of Houston and Indiana University. Another 13 senior investigators from other U.S. institutions will contribute, along with 26 international groups.

The NP3M research hub will assemble a diverse range of scholars, including nuclear theorists, computational astrophysicists, gravitational-wave astrophysicists and multi-messenger observers. The members鈥 expertise will enable the development of nuclear models and astrophysical simulations to understand electromagnetic and gravitational-wave observations of merging neutron stars.

Duncan Brown

Brown brings to the NP3M research hub expertise in gravitational-wave astronomy. In 2017, he was among a team of researchers who : the process of gold being created. Using LIGO observations of neutron star collisions, Brown has studied the nature of matter at extremely high densities and pressures鈥攆ar higher than can be created in a laboratory on the Earth. Observing these collisions has revealed key information about how the nucleus behaves, but researchers say there are still many unanswered questions that NP3M will look to resolve.

鈥淎 complete description of matter at the densities found in atomic nuclei still eludes scientists,鈥 says Brown. 鈥淒iscovering this 鈥榥uclear equation of state鈥 would transform our understanding of dense matter. Multi-messenger astronomy鈥攐bservations with both gravitational waves and light鈥攁re one of the NSF’s 鈥楾en Big Ideas鈥 for research that will advance science and technology in the United States. Multi-messenger observations give us unique insights into the nature of matter and energy and help to answer some of the most profound questions before humankind.鈥

The NP3M research hub will also play a significant role in training the next generation of physicists, from students to post-doctoral researchers. The grant will fund post-doctoral scholars at 黑料不打烊 who will use gravitational-wave observations of neutron star mergers to study the nature of extremely dense matter.

鈥満诹喜淮蜢 scientists will bridge nuclear theory and computer models to gravitational-wave observations made by Advanced LIGO,鈥 Brown says. 鈥淭hey will work closely with hub scientists from across the U.S. with the expertise needed to unlock the secrets of the nucleus using neutron star mergers.鈥

According to Brown, another key part of this project is guiding the development of Cosmic Explorer, the next-generation gravitational wave observatory currently under development that will profoundly change researchers鈥 gravitational-wave view of the cosmos. 黑料不打烊 is one of the lead institutions globally in the development of Cosmic Explorer.

Through a coordinated effort over the next five years, NP3M will make significant breakthroughs in gravitational-wave astrophysics, advance the understanding of dense matter, and educate future researchers. Together, their collaboration will help to unlock some of the universe鈥檚 most hidden secrets.

  • Author

Dan Bernardi

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America鈥檚 Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun 鈥淛ensen鈥 Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences聽(A&S), a logic minor in A&S and a member of the Ren茅e Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor聽Bing Dong聽was recently selected to lead a workshop on artificial intelligence (AI) at聽NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning聽and聽AI聽research. Dong鈥檚 workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at聽CERN’s Large Hadron Collider. The Big Bang created聽equal amounts of matter and antimatter, but now nearly everything鈥攕olid, liquid, gas or plasma鈥攊s…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.