ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Physicists Design Technology Used to Discover New Information About What the Universe Is Made Of

Tuesday, July 11, 2023, By News Staff
Share
College of Arts and SciencesPhysics
Individual in a cleanroom performing scientific testing.

Physics graduate student Hangyi Wu gets ready to utilize a vacuum pick-up tool designed by the High-Energy Physics group for one of the delicate operations involved in assembling the instrumented staves.

physicists just launched a new tracking device to research the fundamental forces and particles in the universe. The device, known as the Upstream Tracker, was installed at the renowned European Organization for Nuclear Research (CERN) laboratory on the Swiss-French border just outside of Geneva, which uses some of the world’s largest and most complex scientific instruments to study fundamental particles.

The Upstream Tracker is part of an ambitious upgrade to the “Large Hadron Collider beauty (LHCb)” experiment taking data at the Large Hadron Collider at CERN, which aims to uncover information about the universe through science known as new physics. New physics is knowledge that enhances the current understanding of how the universe works. The university’s High-Energy Physics group working at LHCb led an international team of collaborators that designed and constructed this detector.

The installation is the culmination of a decade of research and work, led by physics professor . The project received nearly $7 million in awards from the National Science Foundation, with a majority of the funds going directly to ϲ research.

The Upstream Tracker will help scientists search for knowledge beyond the “Standard Model” of physics, which is the current best theory about the building blocks of the universe. The Upstream Tracker is a crucial component of the LHCb tracking system, used to reconstruct the positions of the subatomic particles produced in the proton-proton collisions, and is part of a high-speed processor that implements sophisticated algorithms to make real-time decisions about what to record. It’s technology that will empower physicists to make key discoveries about fundamental particles.

While the Standard Model explains a great deal about the physical matter and forces in the universe, there are significant phenomena that it doesn’t explain, says Artuso, like the existence of dark matter and dark energy, which are invisible but account for about 95 percent of the universe, and the reason why the current universe is stable. The LHCb and Upstream Tracker were designed to help physicists solve these big mysteries through new physics.

Three individuals in masks looking at complex shipping structures.

Graduate students Andy Beiter, Joseph Shupperd and Michael Wilkison perform the final checks on five instrumented staves which are secured in complex shipping structures to safely deliver them to CERN.

Nearly 50 undergraduate students and tens of graduate students contributed to this project over the years and several ϲ faculty members played key roles, including the late Sheldon Stone, who served as project deputy, along with physics professor , who led test beam studies of detector prototypes, associate physics professor , who led the sensor acquisition, physics professor , who is leading the software effort to process the detector information. Physics research assistant professor  was a key player in the detector mechanics and oversaw the production of the detector units in the clean rooms built for this project.

“One of the main tenets of my physics work is to solve mysteries about how the universe works through new physics. But, new physics can be very subtle, elusive, and difficult to detect. Nature wants us to work a little harder to find these secrets. The Upstream Tracker is a key component of the upgraded LHCb detector that is poised to observe rare processes between particles that occur below the current sensitivity level,” says Artuso.

For the full Q&A with Artuso and a pair of alumni share their experience on this project and offered insights about what they hope this device will contribute to human knowledge, visit .

Story written by Emily Halnon.

  • Author

News Staff

  • Recent
  • New $1M Gift to Build Bridges and Create Global Map to Enhance Democracies
    Tuesday, August 12, 2025, By Eileen Korey
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund
  • ‘Perception May Matter as Much as Reality’: ϲ Professor on Paramount-Skydance Merger’s Cultural Impact
    Tuesday, August 12, 2025, By Christopher Munoz
  • How Artists Are Embracing Artificial Intelligence to Create Works of Art
    Tuesday, August 12, 2025, By John Boccacino
  • ϲ, Coca-Cola Enter Into Pouring Rights Agreement
    Monday, August 11, 2025, By Jennifer DeMarchi

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.