ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

Wednesday, April 23, 2025, By Dan Bernardi
Share
BioInspiredCollege of Arts and Sciencesfaculty
The image shows a small, brownish-orange fish with a speckled pattern perched on a dark rock. The fish has elongated fins and a slightly translucent tail. There is an inset diagram highlighting the structure of one of the fish's fins, labeled "Lift" and "Gripping."

The bottom portion of the sculpins’ pectoral fin helps them grip onto surfaces and even walk. (Photo by Emily Kane)

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins manage to grip without a specialized adhesive organ like tube feet or the suction cups of octopuses.

So, why is this significant and why are scientists so keen to understand it? Marine organisms thriving in high-energy environments serve as excellent natural models for designing more efficient and effective human-engineered devices, such as robots, grippers and adhesives. Improved adhesives could have wide-ranging impacts, from enhancing medical devices to creating tires with better road grip.

The image shows a small fish with a greenish, speckled body and translucent fins peeking out from a hole in a rock-like structure. The fish's eye is visible, and it appears to be observing its surroundings from within the shelter. The rock has a rough texture with black speckles on its surface.

New research has uncovered a surprising microscopic feature on the fins of sculpins, potentially aiding their ability to grip their surroundings. (Photo by Emily Kane)

A team of researchers from ϲ and the University of Louisiana at Lafayette who specialize in functional morphology—how the shape and structure of an organism helps it function—recently uncovered a new and surprising traction trait in sculpins. They found microscopic features on their fins, potentially allowing them to adhere strongly to surfaces underwater to fight currents and waves. Their results were published in the journal Royal Society Open Science.

“In order to prevent being swept away, these sculpins need another way to keep themselves in position,” says Emily Kane, professor of biology at the University of Louisiana at Lafayette who co-authored the study with Austin Garner, a biology professor in the at ϲ. “One feature that sets this group apart is the modification of their pectoral fins such that the bottom portion has reduced webbing that allows the fin rays to poke out further than the fin. They can use these for holding onto rocks or other substrates, but some species have further modifications that allow for walking and sensory functions.”

Previous research has shown that sculpins use hydrodynamic mechanisms—like having a small, streamlined body and using their fins to create negative lift—to maintain balance and grip. Additionally, physical mechanisms, such as gripping the substrate with flexible fin rays on the bottom part of the fin (similar to having fingers), have been described. This study documents a new surface texture, suggesting that these bottom fin rays might also create friction or adhesion at a microscopic level, enhancing their grip even further.

Kane and her team first discovered these features during fieldwork in summer 2022 in Friday Harbor, Washington. While observing fins at a microscopic level using a scanning electron microscope, she immediately recognized the similarity between the sculpins’ features and the fine hairs on gecko feet. She then reached out to Garner, who is an expert in animal adhesion and attachment.

“My lab is interested in how animals interface with surfaces in their environment during both stationary and locomotory behaviors, particularly in those organisms that take advantage of adhesive or frictional interactions using specialized attachment organs,” says Garner, who is also a member of the at ϲ, where researchers collaborate to develop and design smart materials to address global challenges. “Using a very similar framework to studies I have conducted in lizards and sea urchins, we worked together to design and execute this study.”

The team focused on traits such as density, area and length to outline the texture of the skin on the fin rays.

“We compared these measures to values in other animals with similar features that are known to produce a friction gripping force, like having sandpaper on the fins,” says Kane. “There are some similarities in sculpins that make us think they could be doing something similar.”

Garner notes that their work is the first description of these microstructures on the fin rays of sculpins. “We not only described the form and configuration of these structures in this work but also generated testable hypotheses that serve as strong intellectual foundations for us to continue probing in our future work on this topic,” he says.

So, what will this forthcoming research involve, and could studying these structures lead to the development of new bio-inspired adhesives for societal use?

Garner suggests that the form and function of sculpin fins could be effectively integrated into bio-inspired robots or grippers for underwater navigation and exploration. As the research progresses, their team anticipates that understanding the microstructures on sculpin fins will offer new possibilities for designing synthetic attachment devices that can attach securely yet detach easily, even underwater.

Who knows, maybe one day an underwater robot with sculpin-inspired grippers will be exploring the ocean depths and making waves in the world of bio-inspired technology.

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.