黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

黑料不打烊 Physicists Help Restart Large Hadron Collider

Friday, May 20, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Physicists in the are participating in the restart of the (LHC), the world鈥檚 largest, most powerful particle accelerator.

Sheldon Stone

Sheldon Stone

The , led by Distinguished Professor , has been splitting time between 黑料不打烊 and in Geneva, Switzerland. Home to the LHC, CERN is the highest energy particle physics and accelerator laboratory in existence.

After months of winter hibernation, the LHC has resumed smashing beams of protons together, in attempt to recreate conditions of the first millionth of a second of the universe, some 13.9 billion years ago.

鈥淭he faster the beams, the more energy they generate on impact鈥攅nergy that is sometimes converted into heavy particles not usually produced by nature,鈥 Stone says. 鈥淭he debris from these collisions tells us a lot about the building blocks of matter and the forces controlling them.鈥

黑料不打烊 is the U.S. host university for CERN鈥檚 Large Hadron Collider beauty (LHCb) experiment, involving more than 800 scientists from 16 countries. In this capacity, Stone and his colleagues are assisting with the development of detector technology for future upgrades of the LHC and its experiments.

Across the Atlantic, the LHC is working around the clock for the next six months. The machine is expected to generate approximately 2 quadrillion high-quality proton collisions鈥攕ix times more than in 2015 and almost as many as during its first three years of operation from 2009 to 2012.

Whereas 2015 was a recommissioning year for the LHC, 2016 should witness the delivery of the maximum amount of data to the LHCb and other CERN experiments, all of which are redefining physics beyond the Standard Model.

“Most experiments discover particles by directly producing them and measuring their byproducts,” Stone says. “LHCb relies on precision measurements of rare processes, and compares how closely the theoretical predictions match the experimental results.”

The LHC produces subatomic fireballs of energy, which morph into the fundamental building blocks of matter. The four particle detectors located on the LHC鈥檚 ring at CERN enable scientists to record and study the properties of these building blocks and to look for new particles and forces.

鈥淭he LHC聽accelerates protons through an enormous vacuum system, 17 miles in circumference. The protons are guided by powerful superconducting electromagnets that, in turn, are cooled by liquid helium,鈥 Stone says. 鈥淧articles normally travel in straight lines, but the magnetic field causes them to curve. By examining the curvature [of the charged particle], we can calculate the particle鈥檚 momentum and, along with the other detection elements, establish its identity.”

Between 2010-13, the LHC produced collisions in which each proton had eight tera-electron volts (TeV, or trillion electron volts) of energy. In 2015, after a two-year shutdown, the collision energy climbed to 13 TeV. 鈥淭his increase in energy enables us to explore a new realm of physics that previously has been inaccessible,鈥 Stone says.

Large Hadron Collider

CERN’s Large Hadron Collider (LHC) circulates beams of protons at the speed of light, before smashing them together. Scientists study the resultant debris for clues about the origins of the universe.

The LHC came into public view in 2012, when scientists proved the existence of the Higgs boson, the so-called 鈥淕od particle,” which is 100 times more massive than the proton and can transmit forces. (Until then, the Higgs boson was the only fundamental particle predicted by the Standard Model that had not been observed.) Since then, Team 黑料不打烊 has helped advance the field of 鈥渘ew physics鈥 with its discoveries, including two never-before-seen five-quark particles.

鈥淪o far, the Standard Model seems to explain matter, but we know there has to be something beyond the Standard Model,鈥 says Denise Caldwell, physics director of the National Science Foundation. 鈥淭his potential 鈥榥ew physics鈥 can be uncovered only with more data [from the current] LHC run.鈥

Among the unsolved problems of physics, which scientists hope the LHC can answer, involve the existence of gravity and dark matter (a type of matter that interacts with the visible universe through gravity) and why matter prevailed over antimatter during the formation of the early universe.

鈥淭he new LHC data will help us verify the Standard Model鈥檚 predictions, while exposing new theoretical subatomic processes,鈥 says Stone, adding that an enormous amount of data, stemming from billions of collisions, is needed to measure well-known Standard Model processes. 鈥淎ny significant deviations could be the first step toward 鈥榥ew physics.鈥欌

  • Author

Rob Enslin

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The聽Department of Physics聽in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime 鈥25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck 鈥25, Isabella Chavez Miranda 鈥25, Lucy Olcott 鈥25 and Morgan Opp 鈥25 started as student researchers in medicinal chemist Robert Doyle鈥檚 lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.