ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologist Awarded NIH Grant to Study Link Between Early-Development Stress, Adult Disease

Wednesday, August 10, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A biologist in the has been awarded a grant to study the link between early-development stress and adult disease.

Sarah Hall

Sarah Hall

Assistant Professor is using a $446,000 grant from the to investigate how fetal and childhood stress triggers long-term changes in gene activity in neurons. Using a microscopic worm called Caenorhabditis elegans, she and her colleagues will characterize the epigenetic mechanisms that regulate the environmental programming of gene expression, leading to certain behavioral traits.

“Increasing evidence suggests that stressful environments early in life can affect the health and behavior of adults,” says Hall, citing the well-worn example of how stressful conditions in the womb often set the stage for depression and metabolic disorders later in life. “These effects are thought to be caused by changes in the regulation of gene expression in specific tissues. What’s not clear, however, is how a particular stress causes long-term changes in gene activity.”

Enter C. elegans, an animal model system for genetics and development, whose fundamental machinery is similar to that of vertebrates, including humans. Previous studies by Hall have shown that gene expression varies widely between adult worms exposed to stress and identical worms that have not. Hall and her team want to know what accounts for these changes.

Part of the answer may be found in RNA interference (RNAi), a process by which cells use RNA molecules to regulate gene activity. Hall’s lab investigates how RNAi regulates genes as a result of stress. Their work centers on a protein called OSM-9, required for a variety of regulatory behaviors in C. elegans and similar to many proteins in humans with the same function.

“OSM-9 activates neurons when they detect a specific environmental stimulus,” says Hall, who also is on the faculty of the and the . “It’s required for attractive and repulsive behaviors and, for worms, to detect being touched.”

Hall explains that adult worms retain a cellular memory of their environmental history, which is reflected in changes in gene expression, genome-wide chromatin state, behaviors and life-history traits.

“We also know that OSM-9 is down-regulated specifically in animals that experience early-life stress, thus correlating with altered sensory behaviors,” she adds.

C. elegans

C. elegans is a free-living, transparent roundworm, approximately one millimeter long. Here, bacteria (in blue) surround the worm’s neurons (red) and digestive tract (green). (Photo courtesy of Heiti Paves / Shutterstock Inc.)

Armed with C. elegans, Hall and her colleagues plan to demonstrate how RNAi and chromatin remodeling pathways (also necessary to regulate gene expression) affect the developmental programming of OSM-9. They also are using bioinformatics to study the regulation of OSM-9, as well as the behavioral consequences of its developmental programming.

“Our experiments will test whether or not altered behaviors due to down-regulation of OSM-9 promote outcrossing [i.e., breeding] among animals with environmental stress, leading to greater genetic diversity within their population,” Hall says. “We also are working to identify additional genes expressed in neurons that are regulated by developmental programming similar to OSM-9.”

Given the similarity of gene regulatory pathways across the species, Hall hopes that her work will inform related investigations into higher organisms, including humans.

“Mechanisms that regulate the establishment and maintenance of gene-expression changes in adulthood due to early-life stress in humans are largely uncharacterized,” she adds. “Our research hopes to change this, leading to a better understanding of the epigenetic programming in the human brain.”

  • Author

Rob Enslin

  • Recent
  • Maxwell’s Robert Rubinstein Honored With 2025 Wasserstrom Prize for Graduate Teaching
    Tuesday, July 15, 2025, By News Staff
  • National Ice Cream Day: We Tried Every Special at ’Cuse Scoops So You Don’t Have To
    Tuesday, July 15, 2025, By News Staff
  • Message From Chief Student Experience Officer Allen W. Groves
    Monday, July 14, 2025, By News Staff
  • Haowei Wang Named Maxwell School Scholar in U.S.-China/Asia Relations
    Monday, July 14, 2025, By News Staff
  • LaunchPad Awards Student Start-Up Fund Grant
    Saturday, July 12, 2025, By Cristina Hatem

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.