ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

LCS’s Heng Yin awarded NSF grant to fight against malicious code

Tuesday, September 7, 2010, By News Staff
Share
Research and Creative

It is a notable achievement to receive a National Science Foundation (NSF) grant.  It is a rare and laudable achievement to receive an NSF grant on the first attempt and as a first-year professor who completed a doctorate degree less than a year ago.  Yet, that is exactly what Heng Yin, assistant professor of computer science in the has accomplished.  

yinAfter completing his Ph.D. in 2009, Yin went straight to work preparing his grant proposal, “Mining Operating System Semantics: Techniques and Applications.”  For this proposal, Yin has received a $427,000 grant from the NSF to fight against malicious code.  

“Previously I have conducted considerable research on understanding and detecting malicious code,” says Yin.  “In this proposal, I switched the analysis target, which is the operating system to be protected against malicious code.” 

Operating systems manage hardware resources and provide a higher-level environment for user applications. Operating systems play a central role in computer systems, especially with respect to security and trustworthiness. The growing focus around security makes it crucial to have in-depth knowledge about inner workings of an operating system.  

Researchers look to track and analyze events such as: what processes are active in the system, which process is currently running, what modules are loaded into a specific process, which files are opened by a process and which network connections have been established. The knowledge about operating system semantics is the foundation for many computer security applications, such as virtual machine introspection, malware detection and analysis and computer forensics. 

However, the existing techniques for obtaining the operating system semantics fall short. They perform static analysis on the operating system source code, and thus cannot be applied to the closed-source operating systems (e.g., MS Windows). The source code analysis also suffers from the WYSINWYX (i.e., What You See Is Not What You eXecute) problem. Furthermore, the obtained semantics knowledge can be easily compromised by various attacks. With such an unsound foundation, the functionality and trustworthiness of these security applications become questionable. 

Yin will work over the next three years to build a novel analysis framework to fortify this base knowledge of code analysis. This analysis framework aims to automatically extract the operating system semantics simply from the binary distribution of an operating system and capture invariants, areas of constancy, among these semantics. 

The benefit of this framework is that it is binary-centric, and therefore can deal with closed-source operating systems. The identified invariants can also help derive trustworthy semantics knowledge, so various forgery attacks can be detected and thwarted. With this proposed analysis framework, Yin will further investigate how to strengthen the functionality and robustness of several key security applications, including virtual machine introspection, rootkit defense and live memory forensics. 

“By analyzing the operating system instead of individual malware instances, we may come up with better defense mechanisms that can defeat entire classes of malware attacks even before new malware attacks are launched,” says Yin.

  • Author

News Staff

  • Recent
  • Bandier Students Explore Latin America’s Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger
  • Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.