ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Research at the interface of physics and biology

Thursday, October 11, 2012, By News Staff
Share
College of Arts and SciencesResearch and Creative

embryoOn the surface, it would seem that zebrafish and humans are about as different as, say, developmental biologists and theoretical physicists. Fish swim; humans walk. Biologists revere Charles Darwin; physicists have an abiding admiration for Albert Einstein. It turns out, however, that zebrafish and humans are very similar during the earliest stages of embryonic development. So much so, that developmental biologists study zebrafish embryos to help answer such questions as how do organs end up on the correct side of the human body?  Turns out, the question is also interesting to a ϲ physicist. , a theoretical in SU’s College of Arts and Sciences, and , a at the State University of New York (SUNY) Upstate Medical University, have teamed up to study how and why a specialized group of cells change shape during the earliest stages of embryonic development, and how this process influences the formation of organs and their proper alignment in the body. Disruptions of the process can lead to such disorders as congenital heart disease in infants.While theirs is an unusual collaboration, it has proved very fruitful for Manning and Amack, yielding two publications in less than a year, one of which is a review in Science, the prestigious flagship publication of the (AAAS).  The review, “,” is part of a special issue, published Oct. 12, focusing on ”

“We were invited to review recent research about how physics provides insight into developmental biology and suggest new ways to move forward in the field,” says Manning, who is also a member of the ϲ Biomaterials Institute. “It was very exciting to be asked because it means the editors respect the work we are doing.”

Amack and Manning published a study in the journal that focused on cell shape changes in early embryonic development. The study, “Regional cell shape changes control form and function of Kupffer’s vesicle in the zebrafish embryo,” was published online July 26 and appeared in print Oct. 1.

“We image live zebrafish embryos as they are developing in real time,” Amack says. “We found that the cells change shape over time and knew that we could manipulate that process in ways that alter heart development. But we didn’t understand the physical interactions or mechanical forces at work among the cells and how that may also influence the process.”

However, this is an area that piques Manning’s interest and one in which she began thinking about as a post-doc at Princeton University.  She and Amack met through an informal developmental biology interest group comprised of researchers from both SU and SUNY Upstate, co-organized by Amack and , associate professor of in SU’s College of Arts and Sciences.

“It was an immediate match,” Manning says of their meeting. “Jeff observed shape changes that couldn’t be fully explained from a biochemical or cell-signaling perspective. I think about the physics at work inside the biological system. It’s the same whether we are trying to explain forces at work in crystals or living cells. If you can write it down as a theory, and if the math is the same, you can work in both areas.”

Amack invited Manning to review his research. “She generated models that added significant insight into our findings,” Amack says. “The biology community largely ignores the physics of the system because it is an area we often just don’t understand. Lisa looked at our results through the eyes of a physicist. Her work laid the foundation for future collaborations between our two groups.”

Manning agrees and also views the publication in Developmental Biology as a first step that yielded promising areas for further inquiry. “Very little is known about how cells behave in their natural environment during early embryonic development,” she says. “Jeff works with embryos in real time. I can make suggestions about experiments based on physical theories; he improves the theories with input from biological experiments.  A better understanding of the interfacial tension (forces) between cells will help explain a large number of processes at the earliest stages of embryonic development.”

And, on a final note, Manning says she also reveres Charles Darwin.

  • Author

News Staff

  • Recent
  • Maxwell’s Robert Rubinstein Honored With 2025 Wasserstrom Prize for Graduate Teaching
    Tuesday, July 15, 2025, By News Staff
  • National Ice Cream Day: We Tried Every Special at ’Cuse Scoops So You Don’t Have To
    Tuesday, July 15, 2025, By News Staff
  • Message From Chief Student Experience Officer Allen W. Groves
    Monday, July 14, 2025, By News Staff
  • Haowei Wang Named Maxwell School Scholar in U.S.-China/Asia Relations
    Monday, July 14, 2025, By News Staff
  • LaunchPad Awards Student Start-Up Fund Grant
    Saturday, July 12, 2025, By Cristina Hatem

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.