ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Beyond Today’s Radio Spectrum: Transmitting Wireless Data on Higher Frequencies

Friday, January 23, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

Everything we do that requires a wireless connection uses the radio spectrum. We’re able to harness radio waves to listen to music in the car or stream Netflix from the 4G network on our smartphones. Each application is assigned its own frequency within the spectrum. The problem is that space is limited and our demand is only increasing. But what if we weren’t bound by this crowded spectrum?

Cenk Gursoy

Cenk Gursoy

The radio spectrum exists on the lower end of the larger electromagnetic spectrum. As you move up the spectrum into microwaves, infrared, visible and ultraviolet light, x-rays and gamma rays, the wavelengths get shorter and their frequency gets higher and higher. of the  sees potential in using higher frequencies for wireless services in something called the “millimeter wave frequency band,” for the primary purpose of allocating more bandwidth to deliver faster, higher-quality video and multimedia content.

Gursoy explains, “The millimeter band is a much broader spectrum and, given the spectrum crunch we are experiencing, we should have already moved there. But there are certain challenges. We intend to look at the challenges and develop solutions to deal with them to move into these higher frequencies.”

The challenges he mentions will not be easily overcome. Substantial research is needed to make this a reality. To start, we don’t have the right equipment for this. New, smaller, adaptive antennas need to be designed for our mobile devices to receive these higher frequency waves. Additionally, while radio waves propagate in a way that can be received over great distances and through weather and structures, millimeter waves require a line-of-sight connection between the transmitting and receiving antennas to work well. Buildings, rain and even the position of a user’s hand on their device can block these shorter wavelengths or have significant impact on the quality of their reception. Attenuation is also a concern. Millimeter waves simply don’t travel the same distances as radio waves.

Research funded by the National Science Foundation will help overcome challenges of harnessing radio waves at the upper end of the spectrum.

Research funded by the National Science Foundation will help overcome challenges of harnessing radio waves at the upper end of the spectrum.

Gursoy and principle investigators at Ohio State University received an award from the National Science Foundation to address these challenges as part of the foundation’s . Their work will take place over the next three years. The work that Gursoy will be completing at ϲ will explore ways to address the line-of-sight and attenuation issues to integrate the use of millimeter waves through modeling.

“By the end of the third year, we will have a good understanding of the limits and what can be done to make this a reality. It’s something that the wireless industry clearly has a vested interest in, so we should see millimeter waves incorporated into things like the upcoming 5G network very soon. If it’s really as promising as it looks, then we should see many products using this by 2020 or earlier,” says Gursoy. “Everyone connected to the project is learning more and it’s exciting because it’s something that very few people are working on and it’s happening here at SU.”

 

  • Author

Matt Wheeler

  • Recent
  • Chancellor Kent Syverud Honored as Distinguished Citizen of the Year at 57th Annual ScoutPower Event
    Thursday, May 8, 2025, By News Staff
  • New Maymester Program Allows Student-Athletes to Develop ‘Democracy Playbook’
    Thursday, May 8, 2025, By Wendy S. Loughlin
  • From Policy to Practice: How AI is Shaping the Future of Education
    Thursday, May 8, 2025, By Christopher Munoz
  • Kohn, Wiklund, Wilmoth Named Distinguished Professors
    Thursday, May 8, 2025, By Wendy S. Loughlin
  • Major League Soccer’s Meteoric Rise: From Underdog to Global Contender
    Wednesday, May 7, 2025, By Keith Kobland

More In STEM

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Distinguished ECS Professor Pramod K. Varshney Establishes Endowed Faculty Fellowship

Distinguished Professor Pramod K. Varshney has exemplified Orange excellence since joining the University as a 23-year-old faculty member. A world-renowned researcher and educator, he’s been recognized for his seminal contributions to information fusion and related fields, introducing new, innovative courses…

Earth Day Spotlight: The Science Behind Heat Pumps (Video)

Peter Wirth has a two-fold strategy when it comes to renovating his home. The Brooklyn, New York, native has called Central New York home for more than 40 years. Nestled on a quiet cul-de-sac in Fayetteville, New York, the 1960s-era…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.