ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded Grant to Study Physical Cell Biology

Tuesday, June 16, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the has been awarded a major grant to study how the shape and motion of individual cells mold biological tissues into three-dimensional shapes.

M. Lisa Manning

M. Lisa Manning

, associate professor of physics, is part of a trio of researchers who have received $168,750 from the and the (RCSA) to explore untested ideas in physical cell biology. Their project, “Immersive DNA Force Sensors and Predictive Mechanical Modeling for Tissue Morphogenesis,” grew out of a research competition recently held at Biosphere 2 in Arizona.

Manning’s team includes , assistant professor of biophysics at Cold Spring Harbor Laboratory, and , assistant professor of physics at the University of Chicago.

“As we grow from a fertilized egg into a human being, our cells push and pull against one another, shaping our tissues, our organs and our bodies,” says Manning, who studies the mechanical behavior of biological cells. “Unfortunately, we don’t know much about these microscopic forces, both within and between cells, and how they enable large, multicellular structures, such as people, to develop.”

To address this complex phenomenon, she and her team have proposed an innovative method for measuring and modeling such forces in tissues. They plan to insert small “nanoprobes” of DNA into developing tissues to record where and when these forces occur. The team will also build predictive 3D computational models that will be directly tested with data from the new force probes—a first in the field of physical cell biology.

“Currently, there are methods for measuring forces in tissues along two-dimensional surfaces, but our proposal promises to enable such measurements in three dimensions,” says Manning, adding that principles of theoretical physics will inform much of the process. “It will provide a critical advance for understanding how three-dimensional structures, such as organs, are formed.”

The idea for the project was conceived during a March conference at Biosphere 2. The conference was part of a two-year Scialog program titled “.” Scialog—a portmanteau word blending “science” and dialogue”–is a conference that fosters intensive discussions, team building and on-the-spot collaborations among early-career researchers.

Manning says she and her teammates worked intensely over several days to create an “original, blue-sky, high-risk” research proposal.

“We were one of five interdisciplinary teams awarded grants,” she says, adding that the conference included other early-career physicists, biologists and chemists. “By bringing together theorists and experimentalists, we are building a community of researchers that seek answers to important biological questions, while increasing our understanding of the physical biology of cells.”

  • Author

Rob Enslin

  • Recent
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger
  • Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference
    Wednesday, July 16, 2025, By Emma Ertinger
  • Lender Center Researcher Studies Veterans’ Post-Service Lives, Global Conflict Dynamics
    Tuesday, July 15, 2025, By Diane Stirling
  • Maxwell’s Robert Rubinstein Honored With 2025 Wasserstrom Prize for Graduate Teaching
    Tuesday, July 15, 2025, By News Staff

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.