ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Mathematicians Sweep NSF Grant Awards

Tuesday, September 8, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Three mathematicians in the have been awarded major grants from the (NSF), totaling more than $518,400. Each grant is for a three-year period.

Professor has received a collaborative research grant for $183,400 to study image and signal processing; Professor , $180,000 to explore harmonic analysis and partial differential equations; and Professor , $155,000 to investigate representation theory and non-commutative algebraic geometry.

“I am extremely proud of these professors, who embody our department’s commitment to research excellence,” says Uday Banerjee, professor and chair of mathematics. “Their cutting-edge work as teachers, scholars and administrators elevates the college, while raising the research profile of the University.”

Lixin Shen

Lixin Shen

Shen’s research focuses on algorithms for optimization problems that arise from a variety of applications, including parallel magnetic resonance imaging in medical imaging processing, as well as facial and fingerprint recognition in security identification systems. Such image/signal problems of practical importance are often modeled as large-scale optimization problems; therefore, he says it is essential to develop efficient computational algorithms to solve them.

An algorithm is a sequence of instructions, used to show how to perform a task.

“Image/signal processing problems of practical importance, such as incomplete data recovery, compressive sensing and matrix completion usually possess hierarchical structures or are represented in a multiscale analysis,” Shen says. “Multiscale analysis, however, is mainly used to sparsify [to scatter or disperse] the underlying image/signal in formulating the optimization problem, but it has not been fully exploited in the development of efficient algorithms. … I will make systematic use of the hierarchical structure in optimization problems of interest to solve them in an accurate and computationally efficient way.”

Loredana Lanzani

Loredana Lanzani

Like Shen, Lanzani is interested in harmonic analysis, but she also is an expert in partial differential equations and complex analysis. Her grant project deals with the study of so-called integral formulas in complex and harmonic analysis. These formulas are often used to recover information in large data sets that are difficult to reach

“For example, integral formulas may be used to determine the internal temperature of something, such as a tree, without poking holes in it,” she says. “After measuring the temperature at a surface level [e.g., the tree’s bark], one can use an integral formula to plot the value of the internal temperature.”

Lanzani says these formulas permeate pure and applied science, and help shed light on the study of heat transfer and celestial mechanics.

Graham Leuschke

Graham Leuschke

Leuschke, who is also associate chair for graduate affairs, works in commutative ring theory, which explains algebraic systems where addition, subtraction and multiplication are defined. Since every commutative ring has a corresponding geometric object, known as an algebraic variety, his work uses aspects of algebraic geometry, commutative algebra and representation theory. Combined with noncommutative algebra, this allows exploration of a new field called “non-commutative algebraic geometry.”

“I want to make sense of the geometric content of noncommutative rings and their representations,” says Leuschke, adding that his project will focus on various rings, categories and other abstract structures. “This kind of data is useful to mathematical physicists who work at the quantum level.”

 

 

  • Author

Rob Enslin

  • Recent
  • 4 Maxwell Professors Named O’Hanley Faculty Scholars
    Monday, July 14, 2025, By News Staff
  • Message From Chief Student Experience Officer Allen W. Groves
    Monday, July 14, 2025, By News Staff
  • Haowei Wang Named Maxwell School Scholar in U.S.-China/Asia Relations
    Monday, July 14, 2025, By News Staff
  • LaunchPad Awards Student Start-Up Fund Grant
    Saturday, July 12, 2025, By Cristina Hatem
  • Former Orange Point Guard and Maxwell Alumna ‘Roxi’ Nurse McNabb Still Driving for an Assist
    Tuesday, July 8, 2025, By Jessica Smith

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.