ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

New Research Introduces ‘Pause Button’ for Boiling

Tuesday, February 23, 2016, By Matt Wheeler
Share
Research and Creative
Using a focused laser beam, asdfasdfasdf

Using a focused laser beam, Shalabh Maroo’s group has managed to hit the pause button on the boiling process

Gather your patience and put the old “a watched pot never boils” saying to the test. The experience might rival watching paint dry, but of course the water will eventually begin to boil. When it does, you’ll see a flurry of bubbles form and quickly rise to the surface of the water. Once it kicks in, it builds at a furious pace and quickly creates a roiling cauldron on your stovetop. Time to add the pasta.

People have been boiling water to make dinner for ages, but it is also used in our refrigerators and even in the international space station as a method for cooling its systems. Ninety percent of all electricity in the United States is generated with steam turbines that require boiling to make the steam. With so many uses and over five decades of research, it is hard to believe that there are any stones left unturned in our understanding of boiling. Yet, as with all things, there is always room to learn more. The formation of bubbles in boiling is not completely understood.

The boiling process is largely driven by the dynamics of a very thin liquid film present at the base of each vapor bubble. Researchers have always found it challenging to study this area in the real world simply because it’s so hard to get a good look at. Bubbles form in unpredictable locations during boiling, and once they do they are fleeting—leaving the heated surface immediately.

A 3D schematic of a vapor bubble on a heated surface in a pool of liquid depicting the three-phase contact line

A 3D schematic of a vapor bubble on a heated surface in a pool of liquid depicting the three-phase contact line

Until now. Using a focused laser beam to essentially hit the pause button on boiling, ’s research group and collaborators at the National Institute of Standards and Technology and Rensselaer Polytechnic Institute have created a single vapor bubble in a pool of liquid that can remain stable on a surface for hours, instead of milliseconds.

This method gives researchers the time necessary to microscopically study vapor bubbles and determine ways to optimize the boiling process—maximizing the amount of heat removal with a minimal rise in surface temperature. Maroo envisions that it will also open the door for advancements in many heat transfer systems.

“With this technique, we are able to analyze the fundamentals of boiling,” says Maroo. “The new understanding is going to help researchers design surface structures to achieve desired heat transfer, accurately predict as well as enhance boiling in outer space, where lack of gravity causes bubbles to stay stationary on a heated surface, and create next-generation technology for thermal management in electronics.”

Maroo’s work has been in Nature Publishing Group’s high-impact journal, Scientific Reports. Within, Maroo elaborates on his methods and scientific achievements of this research, which include the formation and analysis of a steady state bubble on hydrophilic (water-loving) and hydrophobic (water-repelling) surfaces with degassed and regular (containing dissolved air) water; in-situ imaging of the contact line region to measure the contact angle of a vapor bubble and analysis to determine the upper limit of heat transfer coefficient possible in nucleate boiling, which is obtained using experimental measurements of the microlayer (the thin liquid film).

This research is supported by the National Science Foundation. An Zou, who was Maroo’s Ph.D. student and first author of the published paper, successfully graduated with his Ph.D. and is currently a post-doc at University of Michigan.

  • Author

Matt Wheeler

  • Recent
  • Lender Center Researcher Studies Veterans’ Post-Service Lives, Global Conflict Dynamics
    Tuesday, July 15, 2025, By Diane Stirling
  • Maxwell’s Robert Rubinstein Honored With 2025 Wasserstrom Prize for Graduate Teaching
    Tuesday, July 15, 2025, By News Staff
  • National Ice Cream Day: We Tried Every Special at ’Cuse Scoops So You Don’t Have To
    Tuesday, July 15, 2025, By News Staff
  • 4 Maxwell Professors Named O’Hanley Faculty Scholars
    Monday, July 14, 2025, By News Staff
  • Message From Chief Student Experience Officer Allen W. Groves
    Monday, July 14, 2025, By News Staff

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.