ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicists Achieve Success with Shape-Shifting Water Droplets

Friday, March 11, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Physicists in the are close to figuring out how to make biologically inspired robots that can change shape according to their environment.

Sheets of liquid droplets can spontaneously and reversibly change their shape.

Sheets of liquid droplets can spontaneously and reversibly change their shape.

A team of researchers, led by , professor of physics and director of the University’s , has demonstrated how sheets of liquid drops can spontaneously and reversibly change their shape. Their findings are the subject of an article in (American Physical Society, 2016) and a at .

The article is co-authored by Bowick; Jennifer Schwarz, assistant professor of physics; Tao Zhang G’15, a postdoctoral researcher at the University of Pittsburgh and a Ph.D. alumnus of ϲ; and Duanduan Wan, a Ph.D. candidate at ϲ.

“Just as robots are able to pick up things and then put them down [a behavior known as reversibility], we’ve designed and modeled a three-dimensional network of water droplets to do the same,” says Bowick, an expert in condensed matter theory and mathematical physics. “Through biological self-assembly, we’ve been able to create wild and wonderful shapes, like the petals of a flower or the body of a snake, starting with entirely flat layers. Reversibility is engineered by introducing an osmotic interaction to the network.”

physicspeepsThe implications for soft robotics—“a first-generation soft robot that can grab its load, squeeze into a tight space and unload, repeatedly,” Bowick adds—are significant, possibly surpassing the capabilities of conventional hard robotics.

Underpinning such work is self-assembly, the process by which smaller components organize into ordered structures. Drawing on previous experiments, in which biologists have shown how micron-sized droplets self-assemble into various shapes, Bowick and his colleagues devised a theoretical emulsion by immersing water droplets in oil. The result was something like mayonnaise, but with droplets of water instead of oil.

Conjoined by permeable lipid molecules, the droplets formed a tissue-like structure. Salt was then added to create osmotic pressure, causing the sheets of droplets to fold into various three-dimensional structures.

“By swelling some of the droplets and shrinking others, the droplets morphed in size, and the entire network shifted its shape,” Bowick says. “Such shape-shifting is the next important step toward osmotic robotics in this system.”

ϲ researchers focused their attention on a four-petal design that spontaneously folded to produce a hollow sphere. They also demonstrated how to reverse the shape change by placing the sphere within a liquid with a higher solute concentration.

“The droplets in the folding sphere lost water and shrank, causing the hollow sphere to unfold back to its original shape,” Bowick adds.

Duanduan Wang, left, and Tao Zhang G'15

Duanduan Wang, left, and Tao Zhang G’15

The renowned physicist says the experience has been “thoroughly collaborative,” and included three years of “intense” weekly meetings. He reserves special praise for Wan and Zhang: “They made it possible by their dedication to this long and ambitious project.”

Based in the Department of Physics, members of the Soft Matter Program explore the science of easily deformable matter, including liquids, colloids, polymers, foams, gels, granular materials and various biological materials. The program is co-organizing a multinational conference titled “,” running June 20-23.

  • Author

Rob Enslin

  • Recent
  • Lender Center Researcher Studies Veterans’ Post-Service Lives, Global Conflict Dynamics
    Tuesday, July 15, 2025, By Diane Stirling
  • Maxwell’s Robert Rubinstein Honored With 2025 Wasserstrom Prize for Graduate Teaching
    Tuesday, July 15, 2025, By News Staff
  • National Ice Cream Day: We Tried Every Special at ’Cuse Scoops So You Don’t Have To
    Tuesday, July 15, 2025, By News Staff
  • 4 Maxwell Professors Named O’Hanley Faculty Scholars
    Monday, July 14, 2025, By News Staff
  • Message From Chief Student Experience Officer Allen W. Groves
    Monday, July 14, 2025, By News Staff

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.