ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Langmuir Spotlights SU Nanotechnology Research

Thursday, March 31, 2016, By Matt Wheeler
Share
College of Engineering and Computer Science

Nanoparticles are used in a wide range of applications, including targeted drug delivery, biosensing, imaging and catalysis. When they are paired in solutions with surfactants—chemical compounds that determine surface tension—they are even able to form stable suspensions that can trap light. Once honed, this technique could be used to harvest energy from the sun.

LangmuirCover-226x300This is the focus of recently published research by Ph.D. candidate Abhinanden Sambasivam, former post-doctoral researcher Ashish Sangria ’11 of Intel and Distinguished Professor of Biomedical and Chemical Engineering Radhakrishna Sureshkumar titled, “.” Their study appears as the cover story of the , a notable American Chemical Society publication. Within, they detail nanoscale simulations and experimentation.

The image featured on the cover depicts a molecular representation of self-assembly in nanoparticle-surfactant solutions. In the team’s research, they explore the mechanism that causes this process for the first time in molecular dynamics simulations.

Sureshkumar and fellow researchers further used molecular simulations to provide a quantitative description of the shear-induced movement, orientation, stretching and scission of rodlike surfactant micelles in “.” They also extend this methodology to solutions that contain multiple micelles and nanoparticles for studying emerging morphologies, flow-structure interactions and rheological properties in “” and “.”

 

  • Author

Matt Wheeler

  • Recent
  • Whitman School Names Julie Niederhoff as Chair of Marketing Department
    Wednesday, August 13, 2025, By Caroline K. Reff
  • ϲ Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates ’26
    Wednesday, August 13, 2025, By John Boccacino
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund
  • ‘Perception May Matter as Much as Reality’: ϲ Professor on Paramount-Skydance Merger’s Cultural Impact
    Tuesday, August 12, 2025, By Christopher Munoz

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.