黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A New Way to Count Qubits

Monday, September 24, 2018, By Rob Enslin
Share
College of Arts and SciencesPhysicsResearch and Creative

Physicist Britton Plourde part of interinstitutional team revolutionizing quantum computing

Researchers at 黑料不打烊, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Their findings are the subject of an article in magazine (American Association for the Advancement of Science, 2018), which elaborates on the experimental efforts involved with creating such a technique.

Britton Plourde in his lab at 黑料不打烊

Britton Plourde in his lab at 黑料不打烊.

The Plourde Group鈥攍ed by , professor of physics in the College of Arts and Sciences (A&S)鈥攕pecializes in the fabrication of superconducting devices and their measurement at low temperatures.

Much of their work involves qubits, which are systems that follow the strange laws of quantum mechanics. These laws enable qubits to exist in superpositions of their two states (zero and one), in contrast to digital bits in conventional computers that exist in a single state.

Plourde says that superposition, when combined with entanglement (鈥渁nother counterintuitive aspect of quantum mechanics鈥), leads to the possibility of quantum algorithms with myriad applications.

鈥淭hese algorithms can tackle certain problems that are impossible to solve on today鈥檚 most powerful supercomputers,鈥 he explains. 鈥淧otential areas impacted by quantum information processing include pharmaceutical development, materials science and cryptography.”

Intensive, ongoing industrial-scale efforts by teams at and have recently led to quantum processors with approximately 50 qubits. These qubits consist of superconducting microwave circuits cooled to temperatures near absolute zero.

Building a quantum computer powerful enough to tackle important problems, however, will require at least several hundreds of qubits鈥攍ikely many more, Plourde says.

The current state-of-the-art approach to measuring qubits involves low-noise cryogenic amplifiers and substantial room-temperature microwave hardware and electronics, all of which are difficult to scale up to significantly larger qubit arrays. The approach outlined in Science takes a different tack.

鈥淲e focus on detecting microwave photons,鈥 says Plourde, also editor in chief of IEEE Transactions on Applied Superconductivity (Institute of Electrical and Electronics Engineers). 鈥淥ur approach replaces the need for a cryogenic amplifier and could be extended, in a straightforward way, toward eliminating much of the required room-temperature hardware, as well.鈥

Plourde says the technique co-developed at SU and UW-Madison could eventually allow for scaling to quantum processors with millions of qubits. This process is the subject of a previous article by Plourde and his collaborators in (IOP Publishing, 2018).

An A&S faculty member since 2005, Plourde is a recipient of the IBM Faculty Award and the National Science Foundation鈥檚 CAREER Award. He earned a Ph.D. in physics at the University of Illinois at Urbana-Champaign and completed a postdoctoral research fellowship at the University of California, Berkeley.

  • Author

Rob Enslin

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America鈥檚 Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun 鈥淛ensen鈥 Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences聽(A&S), a logic minor in A&S and a member of the Ren茅e Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor聽Bing Dong聽was recently selected to lead a workshop on artificial intelligence (AI) at聽NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning聽and聽AI聽research. Dong鈥檚 workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at聽CERN’s Large Hadron Collider. The Big Bang created聽equal amounts of matter and antimatter, but now nearly everything鈥攕olid, liquid, gas or plasma鈥攊s…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.