黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

New Material Developed at 黑料不打烊 is a Biomedical Breakthrough

Monday, February 25, 2019, By Matt Wheeler
Share
BioInspiredCollege of Engineering and Computer Science
Professor James H. Henderson and Ph.D. candidate Shelby L. Buffington

Professor James H. Henderson and Ph.D. candidate Shelby L. Buffington

Researchers in the College of Engineering and Computer Science have developed a material鈥攁 new kind of shape memory polymer (SMP)鈥攖hat could have major implications for health care.

SMPs are soft, rubbery, 鈥渟mart鈥 materials that can change shape in response to external stimuli like temperature changes or exposure to light. They can hold each shape indefinitely and turn back when triggered to do so.

SMPs have many potential biomedical applications. For example, they are ideal as cardiovascular stents because they can be one shape for surgical insertion and another once positioned in a blood vessel. The warmth of the patient鈥檚 body is all that is required to trigger the shape change.

Along with collaborators at Bucknell University, 黑料不打烊 researchers have designed an SMP that can change its shape in response to exposure to enzymes and is compatible with living cells. It requires no additional trigger, such as a change in temperature. Given these properties, it can respond to cellular activity like healing.

鈥淭he enzymatic sensitivity of the material allows it to respond directly to cell behavior,鈥 explains biomedical engineering Ph.D. candidate Shelby L. Buffington. 鈥淔or instance, you could place it over a wound, and as the tissue remodeled and degraded it, the SMP would slowly pull the wound closed. It could be adapted to play a role in treating infections and cancer by adjusting the material鈥檚 chemistry.鈥

The research team includes Buffington, Justine E. Paul 鈥18, bioengineering junior Mark M. Macios, and Bucknell鈥檚 Patrick T. Mather and Matthew M. Ali Ph.D. 鈥18. Their research, 鈥,鈥 was published in Acta Biomaterialia in January.

The team created the material using a process called dual electrospinning, in which a high-voltage current is applied to two needle tips pumping two separate polymer solutions. The voltage draws out the polymer fibers, and they are blended into a fiber polymer mat. The proper combination of fibers gives the material its shape memory qualities.

Detailed in their paper, the teams analyzed the material鈥檚 properties, shape memory performance and cytocompatibility. Their experiments successfully demonstrated that the SMP鈥檚 original shape could be recovered through a degree of reversal, or degradation, of the shape-fixing phase.

Today, the research team is examining their SMP in cancer and macrophage cell cultures. They hope that with additional research, they will uncover practical uses for their material using lower concentrations of enzymes, produced by less extreme cellular activity.

鈥淲e anticipate that the materials we鈥檙e developing could have broad application in health care. For example, our SMPs could be used in drugs that only activate when the target cells or organ are in the desired physiological state, in scaffolds that guide tissue regeneration in response to the behavior of the regenerating tissue itself, and in decision-making biosensors that guide patient treatment more effectively,鈥 Henderson says. 鈥淲e鈥檙e very excited to have achieved these first enzymatically responsive SMPs.鈥

  • Author

Matt Wheeler

  • Recent
  • 黑料不打烊 Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates 鈥26
    Wednesday, August 13, 2025, By John Boccacino
  • New $1M Gift to Build Bridges and Create Global Map to Enhance Democracies
    Tuesday, August 12, 2025, By Eileen Korey
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund
  • ‘Perception May Matter as Much as Reality’: 黑料不打烊 Professor on Paramount-Skydance Merger鈥檚 Cultural Impact
    Tuesday, August 12, 2025, By Christopher Munoz

More In STEM

New Study Reveals Ozone鈥檚 Hidden Toll on America鈥檚 Trees

A new nationwide study reveals that ozone pollution鈥攁n invisible threat in the air鈥攎ay be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might鈥檝e sounded like something out of a sci-fi movie. Now it鈥檚 here, and it鈥檚 ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun 鈥淛ensen鈥 Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.