ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Professor Qin Collaborates with MIT to Study Fatigue Resistant Hydrogels

Tuesday, March 10, 2020, By Alex Dunbar
Share
BioInspired

For years, scientists have been interested in the potential of hydrogels in biomedical and engineering applications. Hydrogels often contain more than 90 percent water and a small percentage of synthetic polymer and are used in a variety of uses from medical electrodes, tissue engineering and dressings for hard to heal wounds.

“It is an interesting material since it is synthetic but can be bio-compatible since it is mostly water,” says Zhao Qin, assistant professor of civil and environmental engineering in the College of Engineering and Computer Science. “In particular, hydrogels are attractive for biomedical applications.”

While the high percentage of water helps make hydrogels biocompatible, the small amount of synthetic polymer means it is not very strong.

Zhao Qin

While working at the Massachusetts Institute of Technology (MIT), Qin connected with a research team that found that when they cooled a certain hydrogel to negative 20 degrees and heated it back to room temperature, the hydrogel became stronger. That team asked Qin to help with a key question: why does this material become so tough when it experiences the annealing process?

Qin joined the research collaboration to work on the modeling and theoretical calculation that could explain the way the hydrogel responded. He developed a full atomistic model to simulate the behavior of the materials. This model shows that the unwinding process of the crystal domains, which form during the annealing process of the hydrogel, dissipates much more energy than breaking the polymer chains, effectively making the material much tougher. This modeling tool could also be applied to other synthetic polymer structures to study how they would respond to different conditions.

“That’s something I want to study more in the future,” said Qin.

The research by Qin and his MIT colleagues Ji Liu, Shaoting Lin, Xinyue Liu, Yueying Yang, Jianfeng Zang and Xuanhe Zhao on “”was published in the Nature Communications journal in February. Qin sees their work as a significant step forward for future hydrogel applications.

“Patients who might need a metal implant may face inflammation and corrosion issues,” says Qin. “Improved hydrogels could coat implants to make them more compatible and last for a longer time.”

Qin has joined the BioInspired Institute and is looking forward to collaborating with researchers from mechanical engineering, biomedical engineering, chemical engineering, physics, biology and other programs on the ϲ campus.

“I think these kinds of studies need interdisciplinary collaborations like these unique opportunities I have at ϲ,” says Qin.

  • Author

Alex Dunbar

  • Recent
  • Art Museum Faculty Fellows Leverage Collections to Enhance Teaching
    Monday, August 11, 2025, By Wendy S. Loughlin
  • ϲ, Coca-Cola Enter Into Pouring Rights Agreement
    Monday, August 11, 2025, By Jennifer DeMarchi
  • ϲ Stage Announces Cast and Production Team of Musical ‘The Hello Girls’
    Friday, August 8, 2025, By Joanna Penalva
  • Expert Available for New Tariffs on India
    Friday, August 8, 2025, By Ellen Mbuqe
  • ϲ Views Summer 2025
    Friday, August 8, 2025, By News Staff

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.