ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Professor Karson Finds Important Connection Between Geological and Biological Processes

Tuesday, June 2, 2020, By Dan Bernardi
Share
College of Arts and SciencesfacultyResearch and CreativeSTEM
hydrothermal vent

What appears to be black smoke from this hydrothermal vent on the Mid-Ocean Ridge is actually a mix of hot fluids and gases. Reactions with seawater construct chimney-like structures and provide nutrients for microbes. (Photo courtesy: Karson, J.A., D.S. Kelley, D.J. Fornari, M.J. Perfit, and T.M. Shank, “Discovering the Deep: A Photographic Atlas of the Seafloor and Oceanic Crust,” Cambridge University Press, 2015.)

Did you know that over 70 percent of the Earth’s volcanic activity happens on the seafloor along underwater mountain ranges called mid-ocean ridges (MOR)? Lava flows are fed by subsurface magma chambers that heat the rocks and emit large amounts of hydrogen gas from submarine geysers called hydrothermal vents. If the hydrogen were to escape into the oceans and atmosphere, it would participate in various chemical reactions that could harm the environment, like ocean acidification. Higher levels of ocean acidity make it more difficult for marine organisms, such as coral and some plankton, to form their shells and skeletons.

Luckily, much of the hydrogen is consumed by tiny living things called microbes before ever making its way out of hydrothermal vents into the sea.

, the Jessie Page Heroy Professor of Earth Sciences in the College of Arts and Sciences, along with colleagues from Duke University and the Cary Institute of Ecosystem Studies conducted a preliminary investigation to estimate how much hydrogen is generated by various processes at Mid-Ocean Ridges and how much is consumed by microbes. Their research article, , has been published in the journal “Proceedings of the National Academy of Sciences of the United States of America” (PNAS).

Microbes, which are the most primitive and prevalent forms of life on Earth, thrive near hydrothermal vents on the MOR. They consume nutrients from the mix of hot fluids and gases coming out of the chimney-like structures. According to the group’s research, microbes consume at least 30 percent of all hydrogen produced at the MOR. Their effort marks the first attempt to account for all hydrogen within the oceanic environment and provides an initial global estimate for microbial hydrogen consumption within young ocean crust.

“Even though hydrogen is the simplest atom and a fundamental building block of the universe, it is very difficult to account for how it behaves on Earth,” says Karson. “There is an important connection between geological and biological processes that control hydrogen on Earth and most of this activity is happening on the bottom of the ocean where we cannot see it.”

While their research focused on hydrothermal vents with highly concentrated flow, these are only part of the story. Karson says the next step is determining accurate measurements of hydrogen production from other deep-sea processes where the hydrothermal flow is more diffuse. Further research is also warranted to find the hydrogen production in volcanically active zones like the “Ring of Fire” encircling the Pacific region.

  • Author

Dan Bernardi

  • Recent
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Katsitsatekanoniahkwa Destiny Lazore ’26 Receives Prestigious Udall Scholarship
    Tuesday, June 17, 2025, By Jen Plummer
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.