şÚÁϲ»´ňěČ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • şÚÁϲ»´ňěČ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • şÚÁϲ»´ňěČ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Competition, Partnerships Drive Quantum Information Research

Wednesday, September 30, 2020, By Ellen de Graffenreid
Share
Department of PhysicsfacultyResearch and Creative
Professor of Physics Britton Plourde poses in his lab

Britton Plourde

Britton Plourde is used to applying for funding for his lab’s . The physics professor writes grants and polishes proposals that help his team take the next steps in the journey from theory and basic design to modeling to initial prototypes to testing, replication and validation of new technologies. It’s a competitive process, but one that often doesn’t include hearing from your competition and answering rapid-fire questions from potential funders.

That changed for Plourde’s team in early September, when more than 1,000 experts and interested parties from around the world attended a first-of-its-kind live virtual event that included a “Million Dollar International Quantum U Tech Accelerator” supported by the Air Force Office of Scientific Research and Office of Naval Research. His team—one of about 250 in the competition—became one of just 18 finalists for startup funding to support his lab’s research into new designs that will allow quantum communication inside and between quantum computers.

“We’re really fortunate to have this unique partnership very close to şÚÁϲ»´ňěČ in Rome, New York, at the Air Force Research Lab. The new located there brings together public and private partners to create a facility with labs, offices and collaboration space that is less than an hour’s drive from campus,” said Plourde. “The opportunity to collaborate with an organization that is rapidly becoming a center for quantum information science research is very exciting—as is being selected as finalists from an extremely competitive field.”

Instead of writing a grant and waiting for reviewers’ comments and a program manager’s decision, Plourde and his team submitted a proposal, created a poster presentation and pitched their ideas for using metamaterial ring resonators to interact with qubits—the fundamental building blocks of quantum information—to transmit quantum information between nodes on a chip, and eventually, when combined with other quantum technologies, between quantum computers in a lab or over even longer distances. Metamaterial ring resonators are structures made from superconducting metamaterial transmission lines. The Plourde lab recently developed linear transmission lines made from these metamaterials—engineered to have wave properties not found in naturally occurring materials. Bending these lines into a ring configuration allows researchers to explore their novel resonant properties.

“It was a much faster process than a normal grant application and, to become a finalist, we had ten minutes to pitch our ideas to a panel of judges,” Plourde said. “But it was also a chance to get to know the partners working together at Innovare and understand the potential for collaboration—for our faculty, graduate and undergraduate students—right here in our region.”

Quantum information science has the potential to drive breakthroughs in materials science, drug design and other fields where solving key problems involves organizing and analyzing almost unimaginable amounts of data—problems that our current computing technology would take centuries to solve.

Plourde’s research is at the frontier of transmitting and processing quantum information on a chip, with the eventual possibility of forming a distributed quantum network over large distances. His team’s proposal involves designs for processing nodes that would serve as waystations where quantum information, encoded in qubits, is processed and relayed to a new endpoint.

“I hope that this is just the first step in building partnerships with Innovare, the Air Force, the Navy and others in the public and private sectors who are as excited about the potential of this field as we are here at şÚÁϲ»´ňěČ.”

Quantum information science is one of that şÚÁϲ»´ňěČ has identified to promote collaboration between disciplines, attract and retain top faculty and drive research innovation.

  • Author

Ellen de Graffenreid

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to şÚÁϲ»´ňěČ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 şÚÁϲ»´ňěČ. All Rights Reserved.