ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

$1.5 Million NIH Grant Funds ALS-Linked Research

Tuesday, January 12, 2021, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesDepartment of BiologyfacultygrantNational Institutes of HealthResearch and Creative

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat or toxins, certain proteins within the cell condense into liquid-like droplets called condensates. These droplets can be thought of as a form of quality control allowing the cell to minimize the effects of the stress condition.

Carlos Castañeda

Carlos Castañeda (Please note, this image was taken prior to the COVID-19 pandemic and does not reflect current public health guidelines.)

Cases of abnormal condensate formation or persistence have recently been linked to neurodegenerative diseases like ALS (Lou Gehrig’s disease) and cancer. Thanks to a , Carlos Castañeda, assistant professor of biology and chemistry, and his team will investigate the regulation and dysregulation of condensates using biophysical and cell biology approaches. This research may lead to determining what causes diseases like ALS.

To function properly, cells depend on proteins to do their jobs. When a protein mutates, it can cause adverse medical conditions. The protein Castañeda and his team are studying is called Ubiquilin-2 (UBQLN2), which is part of many protein quality control pathways in the cell. Improper functioning of UBQLN2 can result in protein clumping or aggregation, which can potentially cause cells in the nervous system to die. These abnormal protein aggregates are markers for neurological diseases like ALS.

Mutations in UBQLN2 are known to be linked to ALS. Castañeda and his team, including Heidi Hehnly, assistant professor of biology, are hoping to learn how and if these ALS-linked mutations disrupt assembly and disassembly of UBQLN2-containing condensates in cells, as well as what regulates the liquidity of UBQLN2 condensates. By understanding the molecular mechanisms behind UBQLN2 condensates, the team could discover more about what leads to diseases like ALS— and potential ways to cure them.

The grant will also allow the team to determine how UBQLN2’s interactions with other proteins involved in protein quality control influence how UBQLN2 condensates form and dissolve. The team recently discovered that ubiquitin, a similar-sounding but different protein, is important for dissolving UBQLN2 condensates. Specifically, the team suspects that ubiquitin helps UBQLN2 extract and shuttle ubiquitinated proteins out of condensates and transport them elsewhere in the cell to be broken down. This may uncover a new ability for UBQLN2 to selectively extract disease-associated irregular or dysfunctional proteins from condensates.

Castañeda’s team will test this hypothesis by reconstituting the extraction process in test tubes and by developing live-imaging methods to monitor it in cells. In any case, these experiments could uncover disease mechanisms associated with ALS and other neurodegenerative disorders, while also providing a therapeutic avenue to target specific proteins found in condensates for degradation.

“We’re at the forefront of this field, as we’re looking at a unique system whose condensates are modulated by ubiquitin, a tag that targets proteins for myriad pathways including protein degradation, cell cycle control and DNA repair,” says Castañeda. “Studying how UBQLN2 condensates assemble and disassemble is likely to be applicable to how many other condensate systems in the cell work.”

Additional collaborators on the grant include Beverly Petterson Bishop Professor of Neuroscience and Professor of biology Sandra Hewett and Tanja Mittag, associate professor of structural biology at St. Jude Children’s Research Hospital. NIH is the largest public funder of biomedical research in the world, investing more than $32 billion a year to enhance life, and reduce illness and disability. NIH funded research has led to breakthroughs and new treatments, helping people live longer, healthier lives, and building the research foundation that drives discovery.

  • Author

Dan Bernardi

  • Recent
  • Student’s Mobile Upcycled Clothing Business Turns Trash Into Treasures
    Friday, August 22, 2025, By Diane Stirling
  • Q&A for “Will Work for Food,” a new book exploring labor and the food chain
    Friday, August 22, 2025, By Ellen Mbuqe
  • Chaz Barracks Fuses Art, Scholarship and Community in Summer Residency
    Thursday, August 21, 2025, By News Staff
  • Welcome Week 2025: What You Need to Know
    Tuesday, August 19, 2025, By Kathleen Haley
  • How Otto the Orange Spent Their Summer Vacation (Video)
    Tuesday, August 19, 2025, By News Staff

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.