ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers Probe Deep Secrets in Garnet Sand from Papua New Guinea

Wednesday, February 3, 2021, By Dan Bernardi
Share
College of Arts and SciencesDepartment of Earth and Environmental Sciences

On a beach on a remote island in eastern Papua New Guinea, a country located in the southwestern Pacific to the north of Australia, garnet sand reveals an important geologic discovery. Similar to messages in bottles that have traveled across the oceans, sediments derived from the erosion of rocks carry information from another time and place. In this case the grains of garnet sand reveal a story of traveling from the surface to deep into the Earth (~75 miles), and then returning to the surface before ending up on a beach as sand grains. Over the course of this geologic journey the rock type changed as some minerals were changed, and other materials were included (trapped) within the newly formed garnets. The story is preserved in garnet compositions, as well as in their trapped inclusions: solids (e.g., very rare minerals such as coesite – a high pressure form of quartz), liquids (e.g., water) and gases (e.g., CO2).

Suzanne Baldwin stands with hand on metamorphic rock in New Guinea

Suzanne Baldwin examines a gneiss, a type of metamorphic rock on a field expedition to Papua New Guinea. (Photo credit: Prof. Paul Fitzgerald)

Suzanne Baldwin, Thonis Family Professor in the Department of Earth and Environmental Sciences, has led many field expeditions to Papua New Guinea.Her team’s latest results on this tectonically active region have just been published in the prestigious journal.

By reading the rock record researchers revealed the recycling pathway from the surface to deep within the upper mantle and then back to the surface as a result of tectonic and sedimentary processes. The compositions of that sand also hold various key components that reveal how quickly this recycling happened. In this case, transit through the rock cycle happened in less than ~10 million years. This may seem like a long time, but for these geologic processes it is actually remarkably short.

The garnet sands are just the latest piece of the puzzle to understand the geologic evolution of this region. It is the only location on Earth where active exhumation of high- and ultrahigh- pressure metamorphic rocks is occurring during the same rock cycle that produced these metamorphic rocks. The international group of researchers, including Joseph Gonzalez ’19 Ph.D. from ϲ (now a European Research Council postdoctoral researcher at the University of Pavia, Italy), Ph.D. student Jan Schönig and Professor Hilmar von Eynatten from the University Göttingen in Germany, and Professor Hugh Davies (formerly from the University of Papua New Guinea, now at The Australian National University), revealed how the trapped inclusions in garnet sand can be used to determine rock recycling processes within active plate boundary zones.

View of a garnet sand beach

Garnet sand beach on Goodenough Island. These garnets originate from rocks such as the gneiss (pictured above). (Photo credit: Professor Paul Fitzgerald)

At active plate boundaries, like the one the team studied in eastern Papua New Guinea, converging tectonic plates slide toward each other with one plate moving underneath the other to form a subduction zone. During this process, rocks are subducted deep into the Earth. Over time, forces on the plate boundaries may change and rocks can be exhumed to the surface through a process known as lithospheric deformation. The trapped inclusions preserve a record of crustal subduction and rapid exhumation linking upper mantle and surface processes on these short geologic timescales. By applying their approach to both modern sediments and sedimentary rocks, researchers can now reveal the tempo of rock recycling processes throughout Earth’s history.

This study was funded by the ϲ Thonis endowment, grants from NSF Division of Earth Sciences, NSF Major Research Instrumentation Grant and a German Research Foundation Grant.

  • Author

Dan Bernardi

  • Recent
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Katsitsatekanoniahkwa Destiny Lazore ’26 Receives Prestigious Udall Scholarship
    Tuesday, June 17, 2025, By Jen Plummer
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.