黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Using 黑料不打烊 Lava to Understand Metal Worlds

Tuesday, April 6, 2021, By Dan Bernardi
Share
CUSE grantsfacultyResearch and CreativeSTEM
artist rendering of asteroid

Artist rendering of the metallic asteroid 16 Psyche. (Courtesy: Shutterstock)

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary body made of metal rather than those dominated by rock and ice, such as the Earth, Moon or Mars. Inspired by that historic mission, researchers from 黑料不打烊 and North Carolina State have collaborated to investigate how different lava types would flow on a planetary body made of mostly metal, like 16 Psyche. The team then plans to share the published results with NASA and other investigators interested in the 2022 NASA mission to the 鈥渕etal world.鈥

As molten rock, or magma, from deep inside Earth oozes out onto the planet鈥檚 surface, the stream of hot liquid that pours out is then called lava. Lava is one of the fundamental materials that creates and modifies landscapes on planetary bodies in our solar system. The shapes of volcanic landscapes on Earth provide the basis for understanding eruptions on other planets.

Unfortunately for scientists, it is difficult to study active lava flows in nature due to the unpredictability and danger associated with research near an eruption. But researchers at A&S have found a way to study lava more safely. Since 2009, the has been recreating lava flows under controlled conditions on the 黑料不打烊 campus by melting rocks to different temperatures using furnaces. They create meter-scale flows of molten basaltic lava, the same black lava that covers the seafloor, Hawaii, Iceland and other volcanic terranes on Earth and other planets.

When rock is melted under these extreme conditions, researchers at the 黑料不打烊 Lava Project observe an iron-rich material separating out from the molten basaltic lava and sinking to the bottom of the furnace due to its higher density.

In a recent paper published in , the team reported results from their experiments with 鈥渇errovolcanism,鈥 in which metallic flows separate from and interact with the more common basaltic flows. The group included lead author Arianna Soldati, assistant professor of marine, earth and atmospheric sciences at NC State, along with researchers from 黑料不打烊, including James Farrell, postdoctoral researcher; Bob Wysocki, associate professor in the and Jeff Karson, the Jessie Page Heroy Professor and Department Chair of Earth and Environmental Sciences.

The team reports that the metallic lava flows traveled 10 times faster and spread more thinly than the basaltic flows, breaking into distinctive braided channels. The metal also traveled largely beneath the cooling basaltic flow, emerging from the leading edge of the composite flow.

鈥淎lthough this is a pilot project, there are still some things we can say,鈥 Soldati says. 鈥淚f there were volcanoes on 16 Psyche鈥攐r on another metallic body鈥攖hey definitely wouldn鈥檛 look like the steep-sided Mt. Fuji, an iconic terrestrial volcano. Instead, they would probably have gentle slopes and broad cones. That鈥檚 how an iron volcano would be built鈥攂y thin flows that expand over longer distances.鈥

According to Karson, this work shows how molten materials anticipated on planetary surfaces can interact to create distinctive flow 鈥渕orphologies.鈥 These different shapes and textures of lava can be related to their densities, compositions and viscosities.

鈥淰olcanism is one of the first-order processes that shapes planetary surfaces,鈥 Karson says. 鈥淢olten silicate flows (for example, basalt as seen in Hawaii or Iceland or the seafloor) dominate on Earth but other molten materials may be important in other settings. Molten iron-rich flows are likely to have occurred on some planetary bodies, but have not yet been observed. Our experiments show how they might behave and the type of surface features they might produce.鈥

They plan to follow up their research with a series of experiments later this year supported by a 黑料不打烊 CUSE grant to document variations in experimental parameters that will allow them to observe how the metallic lava might behave during eruptive processes.

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented 鈥淪elf-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.鈥 Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding 鈥淏ob鈥 Cheng鈥檚 journey to 黑料不打烊 in pursuit of graduate education in the 1960s was long and arduous. He didn鈥檛 have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons鈥攖he smallest unit of light鈥攊s crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth鈥檚 history help us humans answer the question, 鈥淗ow did we get here?鈥 These moments also shed light on the question, 鈥淲here are we going?,鈥 offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.