ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

(Bio)Sensing Protein Interactions

Tuesday, March 22, 2022, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesfacultyGraduate SchoolgrantPhysicsResearch and Creative
illustration of a biological nanopore-based sensor (gray), which detects WDR5 (red) one molecule at a time. The detection signal (bottom) shows a cartoon of what the raw sensor signal looks like

Cartoon of a biological nanopore-based sensor (gray), which detects WDR5 (red) one molecule at a time. The detection signal (bottom) shows a cartoon of what the raw sensor signal looks like. (Courtesy: Lauren Mayse)

The job of a protein hub inside the nucleus of a cell is similar to a chef in a kitchen. Both need to manage multiple tasks efficiently for a successful outcome. For the chef, if they spend too much time chopping vegetables and neglect the main course cooking on the stove, the result is a burnt dish. Similarly, if the protein hub spends too much time interacting with one protein and is not given a break to accomplish its other important tasks, it can lead to disease states such as cancer.

Researchers in the College of Arts and Sciences’ have been studying a protein hub, called WDR5, which is responsible for many important functions within the nucleus. WDR5 has recently been heavily investigated because it is a promising target for anti-cancer drugs. But until now, not much has been known about how WDR5 interacts transiently with other proteins inside the cell because the necessary technology to study WDR5 did not exist. Using a highly sensitive engineered biosensor, researchers have uncovered new information on how WDR5 connects and disconnects with other molecules.

The collaborative project was funded through a four-year,  (R01) from the National Institutes of Health’s National Institute of General Medical Sciences (NIGMS), awarded to , professor of physics, in 2018. The culminating results of the team’s work have been published in the leading journal . The research team also includes Lauren Ashley Mayse and Ali Imran, both graduate students in Movileanu’s lab, as well as other researchers at SUNY Upstate Medical University, Ichor Therapeutics and the National Institutes of Health’s National Institute of Child Health and Human Development.

How It Works

The goal of the team’s study was to create an ultra-sensitive device capable of detecting and quantifying WDR5. They designed, developed and validated a nanopore-based biosensor, which creates a tiny hole (nanopore) in a synthetic membrane and can identify proteins in solution at single-molecule precision.

The biosensor’s channel-like base creates a small hole in the synthetic membrane and allows ionic solution to flow through it. When the sensor recognizes a specific molecule, in this case WDR5, the ionic flow changes. This change in flow serves as the signal from the sensor that the targeted protein has been found.

“The idea behind this concept was to design nanopores that are equipped with hooks that pull certain proteins from a solution,” says Movileanu, who is also a member of the . “By being able to fish them from a solution one at a time, we can better understand how these proteins function.”

A Tool for Detection

The team revealed new details about the conditions under which WDR5 starts and stops talking to other proteins, which is known as protein association and dissociation. This will allow researchers to better understand how these multitasking molecules carry out their various responsibilities.

“Proteins need to talk to each other for brief periods,” says Movileanu. “In the majority of cancers, you have a situation where at least one protein sits on another protein or talks to another protein for much longer than needed. Many biotechnology companies want to develop drugs that perturb those interactions.”

Mayse shares that their study uncovered new information about WDR5’s unique interface, where a peptide must wiggle into its deep and donut shaped cavity. Their discovery will help researchers develop more effective drugs to target WDR5. “We found that our sensor can recognize WDR5 with a weak connection, a medial connection and a strong connection to a peptide,” she says. “This shows that a potential drug must be able to prevent all three different ways a peptide can associate with WDR5.”

Biosensors like the one developed in Movileanu’s lab could one day lead to more accurate and efficient methods of scanning chemicals in the body, providing an opportunity for doctors to detect diseases much earlier than what is attainable today.

“In many diseases, there are markers, chemicals in our body that change quite a bit in a noticeable way when diseases, such as cancer, start to develop,” says Movileanu. “By integrating these sensors into nanofluidic devices that are scalable, we are not too far from being able to scan many markers from a sample of blood.”

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.