ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Health & Society
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Health & Society

Research Fueled by Chemistry Professors Helps Advance Artificial Enzyme Engineering

Friday, November 4, 2022, By Dan Bernardi
Share
College of Arts and SciencesfacultyResearch and Creative

While corrosion resistance, durability and low cost make plastic a very efficient resource, one of its major drawbacks is the harm it poses to the environment. According to a report from , 51 million tons of plastic waste were generated by households in the United States in 2021, with only 2.4 million tons recycled, making it a pressing concern to the well-being of the planet.

To curb this issue, researchers are seeking ways to develop engineered enzymes capable of breaking down plastic–similar to the way the body breaks down food during digestion.

Each of the roughly 30 trillion cells that make up the human body contains thousands of enzymes. Each enzyme helps the cell with important functions and processes such as digestion, cell regulation and DNA replication, to name a few. Scientists would like to harness this same power to address issues outside of biology, ranging from the aforementioned breaking down of plastic to processing toxic waste to chemical weapon remediation. The idea is to create enzymes that can perform reactions that nature has not yet evolved to do.

Engineered enzymes are already at work in some common household products. For example, researchers found that by adding certain mutated enzymes to detergent, it was possible to improve their ability to break down remnants of proteins and fats on clothing in the form of food, grass or other stains. But like finding a needle in a haystack, one of the ongoing challenges for scientists is finding the right spot on a particular enzyme to improve its ability to promote a specific reaction.

Three researchers pose in an office.

Professors Olga Makhlynets (left) and Ivan Korendovych (center), and graduate student Sagar Bhattacharya (right), co-authored a paper in the journal Nature detailing a method to improve enzyme engineering.

University chemistry professors Ի, and a team of researchers from Yokohama City University in Japan and Vlaams Instituut voor Biotechnologie in Belgium, devised a simple method that uses nuclear magnetic resonance (NMR) directed evolution to improve enzyme engineering.

Similar to a magnetic resonance imaging (MRI) machine in doctors’ offices, which use a magnetic field and radio waves to produce images of the organs and tissues in the body, NMR uses a magnetic field to highlight areas of an enzyme where beneficial mutations could take place. In a proof-of-concept study, the team converted myoglobin, an oxygen storage protein, into the fastest artificial enzyme ever reported. Their results were recently published in the leading journal .

When creating new enzymes for a particular chemical reaction, researchers look for an existing enzyme that functions in a similar way. From there, scientists introduce mutations to that protein and look for improvement of activity.

While this sounds great in theory, Korendovych, lead author, says the process of enzyme engineering is like fishing in an ocean. “You’re not going to a place in the ocean where you know you probably won’t find fish,” he says. “With our method of directed evolution, we are finding areas that we know are good places to fish. If you have a better idea of where you should be looking, you’ll have a better chance of finding these good mutations and creating new enzymes for practical and useful reactions.”

Directed evolution is a method used in protein engineering that mimics the process of natural selection to steer proteins toward a user-defined goal. To improve an enzyme that catalyzes a particular chemical reaction, the research team used NMR to analyze potential samples in a test tube. The magnetic signals that change the most indicated the areas of the protein where beneficial mutations can occur.

Korendovych notes that the beauty of this method is that it provides a fairly simple way to narrow the search space and identify places in the protein where researchers have the best odds for success.

“This is going to be a game-changer in directed evolution,” Korendovych says. “Everyone can take their own enzyme, their own inhibitor for that enzyme and do an NMR experiment and direct evolution without a lot of additional investment.”

The team says this method opens the door to endless enzyme possibilities. From creating green, re-engineered organisms to practical and useful chemistry without waste and organic solvents, this approach can help be broadly used in the field for various reactions.

“Ultimately, we think this will really unleash the power of directed evolution making possible an a la carte development of enzymes,” says Korendovych. “I think this simple approach can help not only drive the development of better catalysts but also produce new fundamental knowledge about enzymes.”

Read the team’s full paper in .

Additional authors include Alona Kulesha, Areetha D’Souza, Inhye Kim, Jennifer H. Yoon and Sagar Bhattacharya from ϲ; Eleonora G. Margheritis, Jeremy R. H. Tame and Katsuya Takahashi from the Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan; and Alexander N. Volkov from the VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.

  • Author

Dan Bernardi

  • Recent
  • Vintage Over Digital: Alumnus Dan Cohen’s Voyager CD Bag Merges Music and Fashion
    Monday, July 7, 2025, By John Boccacino
  • Empowering Learners With Personalized Microcredentials, Stackable Badges
    Thursday, July 3, 2025, By Hope Alvarez
  • WISE Women’s Business Center Awarded Grant From Empire State Development, Celebrates Entrepreneur of the Year Award
    Thursday, July 3, 2025, By Dawn McWilliams
  • Rose Tardiff ’15: Sparking Innovation With Data, Mapping and More
    Thursday, July 3, 2025, By News Staff
  • Paulo De Miranda G’00 Received ‘Much More Than a Formal Education’ From Maxwell
    Thursday, July 3, 2025, By Jessica Youngman

More In Health & Society

Fact or Fiction? The ADHD Info Dilemma

TikTok is one of the fastest-growing and most popular social media platforms in the world – especially among college-age individuals. In the United States alone, there are over 136 million TikTok users aged 18 and older, with approximately 45 million…

Lab THRIVE: Advancing Student Mental Health and Resilience

Lab THRIVE, short for The Health and Resilience Interdisciplinary collaboratiVE, is making significant strides in collegiate mental health research. Launched by an interdisciplinary ϲ team in 2023, the lab focuses on understanding the complex factors affecting college students’ adjustment…

Timur Hammond’s ‘Placing Islam’ Receives Journal’s Honorable Mention

A book authored by Timur Hammond, associate professor of geography and the environment in the Maxwell School of Citizenship and Public Affairs, received an honorable mention in the 2025 International Journal of Islamic Architecture (IJIA) Book Award competition. The awards…

Snapshots From Route 66: One Student’s Journey to Newhouse LA

“If you ever plan to travel west, travel my way, take the highway that’s the best.” It’s been nearly 80 years since Nat King Cole uttered the now famous lyrics, “Get your kicks on Route 66,” but still to this…

Studying and Reversing the Damaging Effects of Pollution and Acid Rain With Charles Driscoll (Podcast)

Before Charles Driscoll came to ϲ as a civil and environmental engineering professor, he had always been interested in ways to protect our environment and natural resources. Growing up an avid camper and outdoors enthusiast, Driscoll set about studying…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.