ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A Star’s Unexpected Survival

Tuesday, February 7, 2023, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsPhysics

Hundreds of millions of light-years away in a distant galaxy, a star orbiting a supermassive black hole is being violently ripped apart under the black hole’s immense gravitational pull. As the star is shredded, its remnants are transformed into a stream of debris that rains back down onto the black hole to form a very hot, very bright disk of material swirling around the black hole, called an accretion disc. This phenomenon – where a star is destroyed by a supermassive black hole and fuels a luminous accretion flare – is known as a tidal disruption event (TDE), and it is predicted that TDEs occur roughly once every 10,000 to 100,000 years in a given galaxy.

Black hole eating a star

This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole in a tidal disruption flare. When a star passes within a certain distance of a black hole – close enough to be gravitationally disrupted – the stellar material gets stretched and compressed as it falls into the black hole. Credit: NASA/JPL-Caltech

With luminosities exceeding entire galaxies (i.e., billions of times brighter than our sun) for brief periods of time (months to years), accretion events enable astrophysicists to study supermassive black holes (SMBHs) from cosmological distances, providing a window into the central regions of otherwise-quiescent – or dormant – galaxies. By probing these “strong-gravity’’ events, where Einstein’s general theory of relativity is critical for determining how matter behaves, TDEs yield information about one of the most extreme environments in the universe: the event horizon – the point of no return – of a black hole.

TDEs are usually “once-and-done” because the extreme gravitational field of the SMBH destroys the star, meaning that the SMBH fades back into darkness following the accretion flare. In some instances, however, the high-density core of the star can survive the gravitational interaction with the SMBH, allowing it to orbit the black hole more than once. Researchers call this a repeating partial TDE.

A team of physicists, including lead author Thomas Wevers, Fellow of the European Southern Observatory, and co-authors Eric Coughlin, assistant professor of physics at ϲ, and Dheeraj R. “DJ” Pasham, research scientist at MIT’s Kavli Institute for Astrophysics and Space Research, have proposed a model for a repeating partial TDE. Their findings, published in , describe the capture of the star by a SMBH, the stripping of the material each time the star comes close to the black hole, and the delay between when the material is stripped and when it feeds the black hole again. The team’s work is the first to develop and use a detailed model of a repeating partial TDE to explain the observations, make predictions about the orbital properties of a star in a distant galaxy, and understand the partial tidal disruption process.

To read the full piece, visit .

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.