ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Researchers Explore How Sound Waves Can Address an Ethical Dilemma in Poultry Farming

Thursday, August 31, 2023, By Dan Bernardi
Share
College of Arts and Sciences

When “egg-flation” hit in 2022, egg prices jumped nearly 50% as a result of bird flu killing off millions of egg-laying hens–the deadliest avian flu in U.S. history. The devastating outbreak was a wakeup call to the farming industry to improve the efficiency of the egg production process to avoid another poultry crisis. Today, egg prices may be receding, but two A&S researchers are helping a company test a new way that could increase the number of egg-laying hens.

There are currently a few known methods of stimulating egg production, with one example being to increase hens’ exposure to light. But what about sound? Could this be the “wave” of the future? The answer is yes, according to Israel-based startup company Soos Technology, who is using sound wave energy to boost the hen population and address age-old ethical and economical concerns within the egg industry.

4 researchers with chicks

Researchers from Soos Technology and ϲ separate male and female chicks at a farm in Auburn, New York. Pictured from left to right are Soos scientist Asaf Moran, Zethus Avery ’23 (student in James Crill’s Lab), Peter Wengert (Ph.D. student in Steve Dorus’ Lab) and Andrew Nicholson (lab assistant in Crill’s and Dorus’ Labs).

Their proposed technology equips incubators with devices that introduce sound waves to fertilized eggs to alter gene expression. The result is genetically male chicks that express female physical traits, which means that these chicks will lay eggs. To help investigate this game-changing breakthrough from a genetic standpoint, Soos has teamed up with College of Arts and Sciences researchers at ϲ.  James Crill, professor of practice in the , and Steve Dorus, professor in the , are collaborating on the project along with a student research assistant funded by Soos for two years, and a former student hired to work on the project full time.

An Ethical Dilemma

At egg farms around the world, culling male chicks is a common practice because the males cannot lay eggs and aren’t used for meat. Out of around 15 billion chicks hatched each year worldwide, 7.5 billion chicks are euthanized after they hatch, costing farms billions in losses and raising questions about the ethical treatment of animals.

In Europe, some countries are already moving away from culling male chicks, as France, Germany, Italy, Austria and Luxembourg are in the process of banning this practice. To do this, they are requiring farms to implement technologies to detect the sex of the embryos before hatching, so they can be destroyed much earlier in the embryonic developmental process.

A Sound Treatment

Researchers at Soos Technology are perfecting a method that could further transform the egg industry. Sound waves, which have been used in the past to , can also alter gene expression in the fertilized chicken embryos, resulting in sex re-assigned chicks that are genetically males but express female physical traits. According to Soos Technology, the treatment is safe for the embryos, non-intrusive to the eggs, and does not involve any form of genetic modification or hormonal intervention.

The researchers control the environmental conditions in the incubator during embryonic development using sound energy produced by vibration. By altering the sound frequencies and volumes, and the humidity and temperatures within the incubator, Soos Technology claims they can increase the odds of hatching a female chick from 50% to near 80%.

A Central New York Collaboration

To scale up their groundbreaking technology and apply it to an agricultural setting, Soos Technology was awarded a $1 million grant through the . As part of the proposal, they were required to partner with a farm and university located in New York State. They formed a collaboration with a commercial farm located in Auburn, New York, around 30 minutes west of ϲ, and Crill and Dorus.

Researchers checking chicks

From left, Zethus Avery, Peter Wengert and Andrew Nicholson checking recently hatched chicks to determine their sex.

The farm’s proximity to ϲ allows Crill, Dorus and A&S students to participate in hands-on research each step of the way. In addition to helping sort chicks on the farm, the faculty and student team is conducting microscopy and genetic analysis on embryos that have been shipped from the farm to campus labs.

“In our labs at ϲ we have a large experiment in place that is looking at genomic and RNA expression to find out what’s happening inside of the chicken during embryonic development that actually tells it to be a female but also have all the male genetics in place,” says Crill. “We are looking to determine how the sound waves are triggering certain female genes to be expressed over the male genes.”

Representatives from Soos Technology have been making periodic trips from Israel to Central New York throughout the implementation and hatching process. Their initial work involved installing and optimizing the incubators at the farm with the sound wave devices in early 2022. Since then, they have returned during hatching periods to document the success rate of their method by comparing the sex of chicks from a control group not exposed to the sound waves to a group that has received the treatment. Their early data shows promise, as around 61% of the hatched chicks who have undergone the Soos treatment have been female.

“The most significant discovery we found was that exposure to sound transmissions at certain frequencies and intensities in the hatchery significantly affects the sex change process, especially when it is performed from day 0 to day 16,” says Efrat Petel, general manager for Soos USA. “On Experiment 26, we found a 69% female ratio in one set and a 63% female ratio in another set. Our technology can influence the embryo to develop into a female, which is eventually able to lay eggs.”

In the coming months, ϲ researchers will continue analyzing genetic data and performing statistical analysis to determine exactly how sound energy-based incubation is resulting in the production of functional female chickens from genetically male embryos. Their work could result in a new method of incubation that would revolutionize the poultry industry and save both billions of dollars and billions of chicks each year.

  • Author

Dan Bernardi

  • Recent
  • Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering
    Friday, September 12, 2025, By Emma Ertinger
  • University Partnering With CXtec, United Way on Electronic Upcycle Event
    Friday, September 12, 2025, By John Boccacino
  • George Saunders G’88 Wins National Book Award
    Friday, September 12, 2025, By Casey Schad
  • Quiet Campus, Loud Impact: ϲ Research Heats Up Over Summer
    Friday, September 12, 2025, By Dan Bernardi
  • Expert Available on NATO Planes Shooting Down Russian Drones Deep Inside Poland
    Thursday, September 11, 2025, By Ellen Mbuqe

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: ϲ Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at ϲ never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.