ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Exploring the Existence of Life at 125 Degrees Fahrenheit

Tuesday, September 26, 2023, By Dan Bernardi
Share
College of Arts and SciencesfacultyResearch and CreativeSTEM
two people standing at edge of lake

College of Arts and Sciences biologists Angela Oliverio, left, and Hannah Rappaport at the United States’ largest geothermal lake at Lassen Volcanic National Park in California

There are an estimated 8.7 million eukaryotic species on the planet. These are organisms whose cells contain a nucleus and other membrane-bound organelles. Although eukaryotes include the familiar animals and plants, these only represent two of the more than six major groups of eukaryotes. The bulk of eukaryotic diversity comprises single-cell eukaryotic microorganisms, known as protists. By studying protists, scientists can gain insight to the evolutionary processes that shaped the diversity and complexity of eukaryotic life and led to such innovations as multicellularity that made animal life on the planet possible.

As researchers work toward a better understanding of the mechanisms behind the evolution of species on Earth, questions remain about how microbial eukaryotes adapted to the planet’s extreme environments. To dive further into this topic, scientists in the College of Arts and Sciences’ (A&S) Department of Biology are currently investigating protists that inhabit some of the harshest environments on Earth: extremely hot and acidic geothermal lakes.

A team led by , assistant professor of biology, recently returned from Lassen Volcanic National Park in California, home to the largest geothermal lake in the U.S.

“This lake is an acid-sulfate steam-heated geothermal feature, meaning it is both quite hot (~52 C/124 F) and acidic (pH ~2),” says Oliverio, who started at the University in 2022. “This makes it a very unique environment to study polyextremophiles, which are organisms that have adapted to two or more extreme conditions—in this case high temperature and low pH.”

So how did they know to travel to a hot lake in California to find microbial eukaryotic life? In a recent study published in co-authored by Oliverio and Hannah Rappaport, a researcher in , the team built a database of previous studies that searched for microbial eukaryotic life across extreme environments. Specifically, they analyzed which eukaryotic lineages were detected multiple times from different studies under similar environmental conditions.

“We discovered that several lineages of amoebae were often recovered from extremely high temperature environments,” says Oliverio. “This suggests that studying those lineages may yield great insight into how eukaryotic cells can adapt to life in extremely hot environments.”

microscopic view of algae

Image of amoebae (circular gray spots in the background) and red algae (four white ovals in the foreground), photographed by Hannah Rappaport using light microscopy. These were sampled from a geothermal lake at Lassen Volcanic National Park.

According to Oliverio, one particular study conducted by Gordon Wolfe’s lab at Cal State Chico revealed an amoeba, T. thermoacidophilus, was quite abundant in Lassen National Park’s geothermal lake. However, no genomic data on this organism exists. Determining how this species adapted to this extreme environment could expand the understanding of what types of environments in the Universe may be considered suitable for life.

This past summer, Oliverio and Rappaport traveled to Lassen National Park to find out more about this particular protist and to search for other novel extremophilic eukaryotes. At the lake, the team used a long painter’s pole affixed with a 1-liter bottle to obtain samples—no easy task considering the water is well over 100 degrees Fahrenheit. Afterward, the bottles were transported back to Oliverio’s lab at ϲ and the team is currently isolating single cells for genome sequencing and characterizing the amoebae by microscopy.

While many unknowns remain about how eukaryotes adapt to exist in extreme environments, Oliverio is hopeful that this research will help close some of the current knowledge gaps.

“We suspect that there is something special about the amoeboid form that enables persistence in these eukaryotic lineages, but the mechanism remains unknown,” she says. “Based on our research, we hypothesize that horizontal gene transfer (movement of genetic information between organisms) from bacteria and genome reduction (when a genome deletes genes it does not need), along with expansion of particularly useful gene families, may be a few of the ways in which protists have acquired the toolkit to survive in extreme environments.”

Oliverio notes that the team’s genome-scale findings will contribute important missing data into reconstructions of the tree of life. “This will further our understanding of the distribution and evolution of life on Earth.”

  • Author

Dan Bernardi

  • Recent
  • Art Museum Faculty Fellows Leverage Collections to Enhance Teaching
    Monday, August 11, 2025, By Wendy S. Loughlin
  • ϲ, Coca-Cola Enter Into Pouring Rights Agreement
    Monday, August 11, 2025, By Jennifer DeMarchi
  • ϲ Stage Announces Cast and Production Team of Musical ‘The Hello Girls’
    Friday, August 8, 2025, By Joanna Penalva
  • Expert Available for New Tariffs on India
    Friday, August 8, 2025, By Ellen Mbuqe
  • ϲ Views Summer 2025
    Friday, August 8, 2025, By News Staff

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.