黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

5 NSF Grants Fund 黑料不打烊 Researchers鈥 Work With Cosmic Explorer

Thursday, October 12, 2023, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsNational Science FoundationPhysics
Artist rendering of neutron star merger

University researchers received over $1.5M in NSF funding to study gravitational waves and design next-generation observatories. (NSF LIGO; Sonoma State University; A. Simonnet)

Billions of years ago in a distant galaxy, two black holes collided sparking one of the universe鈥檚 most extreme cosmic events. The occurrence was so powerful that it bent the fabric of spacetime, sending out ripples called gravitational waves.

These waves would eventually be detected on Earth by Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, with 黑料不打烊 faculty playing a leading role in that monumental discovery. While members of the University’s Gravitational-Wave Group took a moment to celebrate the incredible feat, they immediately began wondering how they could build a new observatory that would allow them to explore even more of the Universe with gravitational waves.

Enter Cosmic Explorer, a next-generation gravitational-wave observatory being devised by the 黑料不打烊聽Center for Gravitational Wave Astronomy and Astrophysics (CGWAA). Established this fall, CGWAA is a hub for students and faculty at the University to play a principal role in the design and operation of gravitational-wave observatories. Working with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University, Fullerton, and the University of Florida, the CGWAA team hopes that Cosmic Explorer will be searching the universe by the mid-2030s.

Rendering of two large white buildings and one smaller one on what looks like flat land with larger hills in the backgound.

Artist鈥檚 impression of Cosmic Explorer. (Eddie Anaya, California State University Fullerton)

To put the capability of Cosmic Explorer in perspective, while Advanced LIGO has made around 100 detections of colliding black holes since 2015, Cosmic Explorer will be able to detect every collision in the visible universe鈥揳bout 100,000 per year, or one every five minutes. Cosmic Explorer will also see around one million neutron star mergers each year, allowing scientists to understand the nature of nuclear matter and the creation of heavy elements.

Gravitational wave detectors, like Cosmic Explorer, are large-scale interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams and interference (the adding or canceling of combined beams) to measure the displacement of a mirror caused by the ripples from gravitational waves. The advanced detectors help researchers map black holes in the universe, something not previously possible with telescopes since, unlike stars, black holes do not produce light.

Group of people standing outside together on a beautiful fall day.

Physicists from 黑料不打烊, Massachusetts Institute of Technology, Pennsylvania State University, California State University, Fullerton, and University of Florida during a proposal-writing workshop at 黑料不打烊鈥檚 Minnowbrook Conference Center.

In October 2022, Cosmic Explorer project collaborators came together for a proposal-writing workshop at 黑料不打烊鈥檚 Minnowbrook Conference Center, resulting in over $9M of federal funding to the project. 黑料不打烊 is receiving $1.64M of funding over the next three years as part of that NSF commitment.

Among the researchers from the College of Arts and Sciences who recently received funding for their work with Cosmic Explorer are聽, professor of physics and founding director of CGWAA; Georgia, assistant professor of physics; Craig, research professor of physics; and 听补苍诲听, professors in the Department of Earth and Environmental Sciences, whose grant will involve site evaluation for the proposed observatory.

鈥淲ithout the support of NSF, this important work would not be possible,鈥 says Ballmer. 鈥淲hen we established the Center for Gravitational Wave Astronomy and Astrophysics, the idea was to strengthen 黑料不打烊鈥檚 status as a pioneer in the field of gravitational wave detection. These awards from the NSF affirm that commitment and will establish the center as a key player in enabling the Cosmic Explorer project to come to fruition.鈥

To read the full story, .

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented 鈥淪elf-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.鈥 Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding 鈥淏ob鈥 Cheng鈥檚 journey to 黑料不打烊 in pursuit of graduate education in the 1960s was long and arduous. He didn鈥檛 have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons鈥攖he smallest unit of light鈥攊s crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth鈥檚 history help us humans answer the question, 鈥淗ow did we get here?鈥 These moments also shed light on the question, 鈥淲here are we going?,鈥 offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.