黑料不打烊

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 黑料不打烊 Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • 鈥機use Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Physicist Awarded 2 NIH R01 Grants for Cutting-Edge Biosensor Design Work

Tuesday, November 14, 2023, By Dan Bernardi
Share
College of Arts and SciencesNational Institutes of HealthResearch and Creative

The National Institutes of Health鈥檚 R01 grants are among the organization鈥檚 oldest and most prestigious awards presented to investigators conducting biomedical research. With only around a 20% success rate per application, receiving just one of these highly selective grants in a year, which provide support for up to five years, is a notable accomplishment for any faculty member. It is extremely rare to receive two R01 awards in the same year and is a feat that has not occurred at 黑料不打烊 in the recent past.

Liviu Movileanu

Professor Liviu Movileanu

, professor of physics in the College of Arts and Sciences, was recently awarded a pair of R01 awards through the NIH鈥檚 Institute of Biomedical Imaging and Bioengineering and Institute of Medical Sciences totaling $3 million. The grants support his ongoing work to develop a generalizable nano-sized sensor capable of detecting proteins with high sensitivity and specificity. These nano-sensors could one day allow researchers to identify biomarkers for cancers and other diseases in complex biofluids.

These aren鈥檛 the first major NIH awards for Movileanu, who has been a professor at 黑料不打烊 since 2004. A $1.2 million grant resulted in a pivotal paper published earlier this year in , which formulated a nanopore sensor design architecture that can be applied to a broad range of protein targets.

To conceptualize a nanopore sensor, think of it like a 鈥渉ook and bait.鈥� A tiny protein binder acts as the hook and fuses to a small hole created in the membrane of a cell鈥攌nown as a nanopore鈥攚hich allows ionic solution to flow through it. When the sensor recognizes a targeted molecule, the ionic flow changes signaling that the biomarker has been found鈥攍ike an angler hooking a fish.

Movileanu鈥檚 $1.4 million grant, titled 鈥�,鈥� will involve the development, optimization and validation of a next-generation class of sensing elements for targeted protein biomarker detection at single-recognition event precision.

Nanopore sensor graphic

Graphic illustrating three distinct protein binders attached to the same nanopore. Such modular nanostructures form three individual sensors to detect three target proteins. Because only a tiny part of the binder is altered for a target protein, this nanopore is generic for a broad spectrum of targets. (Image courtesy of Mohammad Ahmad)

Proteins interact with each other on a one-on-one basis to carry out various jobs in the cell. When one protein 鈥渃aptures鈥� another protein, it is known as a protein recognition event. Capture and release events of one protein by another are part of a reversible (transient) process within the cell that can take from a few microseconds to tens of seconds. When the interaction is too short or too long, it can result in perturbations in the chemical traffic inside the cell. Movileanu explains that through this grant, they hope to design tiny sensors to monitor these captures and releases in real-time and at the single-molecule level.

鈥淲e will utilize advanced protein engineering and single-molecule technologies to explore further advantages and shortcomings of nanopore sensors, yet with an emphasis on those chemicals that are amplified in the blood stream or other complex biofluids under disease-like conditions such as solid tumors or hematological malignancies,鈥� says Movileanu.

To address upcoming fundamental challenges regarding detection of proteins at low numbers, the team will utilize a mechanism to amplify the sensor鈥檚 signal. The proposed design will also discriminate proteins with similar structures but different functional features, essentially weeding out protein look-alikes. Lastly, their study will identify subpopulations of similar proteins with different functional roles, which is challenging using existing technologies.

While the first grant is focused on developing a broad range of sensor structures, compositions, architectures and functions with a long-term goal of highly sensitive biomarker detection, the second $1.6 million grant will be exclusively focused on developing nanopore sensors for various classes of kinases, which offer strategic drug targets that have critical implications in numerous cancers. Titled 鈥�,鈥� this research will involve tuning nanopore sensors to identify and quantify a significant group of kinases.

Kinases are protein enzymes that facilitate a phosphate-transfer reaction known as phosphorylation, one of many mechanisms by which proteins are chemically modified after they are produced in the cell. Phosphorylation processes are involved in key cellular activities and functions, including cell growth, differentiation and cycle, as well as intracellular and intercellular signaling.

According to Movileanu, abnormal deviations in phosphorylation pathways result in profound molecular disturbances in signaling, ultimately leading to numerous cancers, diabetes and neurological diseases.

鈥淜inases are the most extensively studied molecular machines that regulate chemical modifications of proteins,鈥� says Movileanu. 鈥淏ecause kinases are molecular machines at the heart of cellular functions, their functional features are critical under physiological and disease-like conditions.鈥�

With this grant, the team will seek a better quantitative and mechanistic understanding of kinases which could uncover essential knowledge of how a disease state progresses through various phases. Their generalizable and highly specific nanosensors can also help address current challenges preventing the use of numerous kinase-targeted drugs already approved by the FDA.

In the future, Movileanu says this nanosensor technology may take the place of imaging and biopsies when diagnosing cancers. By integrating the sensors into nanofluidic devices, this machinery would allow scientists to test for many different biomarkers at once in a specimen, providing a fundamental basis for biomarker detection in complex biofluids such as blood.

  • Author

Dan Bernardi

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The聽Department of Physics聽in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime 鈥�25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck 鈥�25, Isabella Chavez Miranda 鈥�25, Lucy Olcott 鈥�25 and Morgan Opp 鈥�25 started as student researchers in medicinal chemist Robert Doyle鈥檚 lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 黑料不打烊. All Rights Reserved.