ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Biologist Calls for Protection and More Studies of Natural Time Capsules of Climate Change

Wednesday, May 29, 2024, By News Staff
Share
College of Arts and Sciences
Packrat middens

Neotoma rodents (woodrats) in a nest, also known as a midden, at City of Rocks National Reserve in Idaho. Pictured are both a modern and ancient midden.

Packrats, also known as woodrats, are the original hoarders, collecting materials from their environment to make their nests, called . In deserts throughout western North America, for instance, packrat middens can preserve plants, insects, bones and other specimens for more than 50,000 years, offering scientists a snapshot into the past. Packrats and numerous other rodent species in dry environments around the world gather plants, insects, bones and other items into their nests from a radius of about 50 feet and urinate over them. The urine dries and crystallizes, hardening the fossils into rock-like masses and preserving the items inside.

Katie Becklin

Katie Becklin, assistant professor of biology in the College of Arts and Sciences

Ancient rodent middens have allowed scientists to reconstruct the ecology and climate of semi-arid ecosystems in the Americas, Australia, Africa and the Arabian Peninsula. These natural time capsules are unparalleled archives for observing how plant, animal and microbial species and assemblages have responded over millennia as environmental conditions have changed. Researchers have learned how populations of plants and animals were impacted by climate change in the past, which can provide clues about how populations might respond to future rapid climate disruption.

Today, with advanced molecular technology, scientists can learn more than ever about the ancient organisms that once inhabited the area in and around these middens.

Now, scientists are calling for improved preservation of middens, new research in existing archives and a revival of field studies, according to a prospectus paper recently published online in . The paper is the result of a multi-year effort involving collaborators from 10 different institutions in the United States, France and Chile, according to , lead author and assistant professor of biology in ϲ’s College of Arts and Sciences.

“New technology in DNA and chemical analysis also allows us to get more information from smaller and smaller amounts of materials,” says Becklin. “We can start to understand what traits are important for predicting which species could do well in the future as climate change continues to impact natural systems.”

Researcher holding an ancient midden

Researcher Francisca Diaz, a co-author on the study, sampling middens in the Atacama Desert in South America.

But most midden collections are stored at individual institutions where they could be lost or discarded as researchers retire. Midden fossils in the wild meanwhile are vulnerable to destruction by human development and ongoing climate change.

The authors recommend establishing regional depositories for midden materials, which could provide long-term access for researchers. Additional middens must be collected and preserved to stem accelerating losses from land-use conversion, mineral resource extraction, increased wildfire frequency and climate change.

“This is an invitation to the next generation of scientists to take advantage of these resources, to build on the legacy of midden research so far,” says Becklin. “We need to protect these records and make them accessible to the global scientific community and bring in new ideas and people to continue this work.”

This story was written by John H. Tibbetts

  • Author

News Staff

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.