ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Biologist Calls for Protection and More Studies of Natural Time Capsules of Climate Change

Wednesday, May 29, 2024, By News Staff
Share
College of Arts and Sciences
Packrat middens

Neotoma rodents (woodrats) in a nest, also known as a midden, at City of Rocks National Reserve in Idaho. Pictured are both a modern and ancient midden.

Packrats, also known as woodrats, are the original hoarders, collecting materials from their environment to make their nests, called . In deserts throughout western North America, for instance, packrat middens can preserve plants, insects, bones and other specimens for more than 50,000 years, offering scientists a snapshot into the past. Packrats and numerous other rodent species in dry environments around the world gather plants, insects, bones and other items into their nests from a radius of about 50 feet and urinate over them. The urine dries and crystallizes, hardening the fossils into rock-like masses and preserving the items inside.

Katie Becklin

Katie Becklin, assistant professor of biology in the College of Arts and Sciences

Ancient rodent middens have allowed scientists to reconstruct the ecology and climate of semi-arid ecosystems in the Americas, Australia, Africa and the Arabian Peninsula. These natural time capsules are unparalleled archives for observing how plant, animal and microbial species and assemblages have responded over millennia as environmental conditions have changed. Researchers have learned how populations of plants and animals were impacted by climate change in the past, which can provide clues about how populations might respond to future rapid climate disruption.

Today, with advanced molecular technology, scientists can learn more than ever about the ancient organisms that once inhabited the area in and around these middens.

Now, scientists are calling for improved preservation of middens, new research in existing archives and a revival of field studies, according to a prospectus paper recently published online in . The paper is the result of a multi-year effort involving collaborators from 10 different institutions in the United States, France and Chile, according to , lead author and assistant professor of biology in ϲ’s College of Arts and Sciences.

“New technology in DNA and chemical analysis also allows us to get more information from smaller and smaller amounts of materials,” says Becklin. “We can start to understand what traits are important for predicting which species could do well in the future as climate change continues to impact natural systems.”

Researcher holding an ancient midden

Researcher Francisca Diaz, a co-author on the study, sampling middens in the Atacama Desert in South America.

But most midden collections are stored at individual institutions where they could be lost or discarded as researchers retire. Midden fossils in the wild meanwhile are vulnerable to destruction by human development and ongoing climate change.

The authors recommend establishing regional depositories for midden materials, which could provide long-term access for researchers. Additional middens must be collected and preserved to stem accelerating losses from land-use conversion, mineral resource extraction, increased wildfire frequency and climate change.

“This is an invitation to the next generation of scientists to take advantage of these resources, to build on the legacy of midden research so far,” says Becklin. “We need to protect these records and make them accessible to the global scientific community and bring in new ideas and people to continue this work.”

This story was written by John H. Tibbetts

  • Author

News Staff

  • Recent
  • Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering
    Friday, September 12, 2025, By Emma Ertinger
  • University Partnering With CXtec, United Way on Electronic Upcycle Event
    Friday, September 12, 2025, By John Boccacino
  • George Saunders G’88 Wins National Book Award
    Friday, September 12, 2025, By Casey Schad
  • Quiet Campus, Loud Impact: ϲ Research Heats Up Over Summer
    Friday, September 12, 2025, By Dan Bernardi
  • Expert Available on NATO Planes Shooting Down Russian Drones Deep Inside Poland
    Thursday, September 11, 2025, By Ellen Mbuqe

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: ϲ Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at ϲ never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.