ϲ

Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • ϲ Impact
  • |
  • The Peel
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Future Therapeutic Strategies May Depend on Creative Scientific Approaches Today

Thursday, October 31, 2024, By News Staff
Share
College of Arts and SciencesDepartment of PhysicsfacultyNational Science Foundation

Before any scientific question can be answered, it must be dreamed up. What happens to cause a healthy cell or tissue to change, for instance, isn’t fully understood. While much is known about chemical exposures that can lead to genetic mutation, damaged DNA, inflammation and even cancer, what has rarely been asked is how physical stressors in the environment can cause a cell or tissue to respond and adapt. It’s a piece of the puzzle upon which future medical breakthroughs might depend.

Homeostasis refers to a state of equilibrium; at the cellular and tissue level, any changes in environment will spur a response that balances or accommodates it. “Mostly people think of chemical changes, exposure to drugs, for instance,” says Schwarz, principal investigator on the project. “Here we ask, what if you squeeze a cell—or a group of cells or tissue—mechanically? Can it still carry out its functions? Maybe not. Maybe it needs to adapt.”

Ի , both professors in the Ի members of the , have been awarded a four-year National Science Foundation grant from Physics of Living Systems, for a project titled “.”

Two headshots of people side by side

From left, Alison Patteson and Jennifer Schwarz

As co-principal investigator Patteson notes, describing the idea this way is a new use of scientific language. “As physicists, we are proposing this idea that there is a mechanical version of homeostasis,” she says. “We have proposed a framework for that.”

Drawing upon previous collaborations that have examined specific scales (such as chromatin molecules, individual cell motion, and collective cell migration through collagen networks), the investigators will work to build a multiscale model to capture how chromatin remodels from physical stressors at the cell- and tissue-level. They will conduct experiments involving mechanical compression, and working with the , observe detailed microscopic images of the cells in action.

Fluorescence microscope image of a cell amidst fibrous structures, displaying vibrant colors with a scale bar indicating 50 micrometers.

3D reconstruction of a collection of cells, called a cell spheroid, with individual nuclei in yellow. This is an example of a detailed microscopic image used to study cell motility. (Photo credit: Minh Thanh of the Patteson Lab and Blatt BioImaging Center)

Understanding these mechanisms may have broad implications in health research, shedding light on the causes of and therapeutic treatments for inflammation and potentially, cancer.

“We know that most cancerous tissues get stiffer,” says Patteson. “That’s how you identify it. There’s clearly a change in mechanics associated with the development of the disease.”

But much remains to be discovered about the interactions and processes at different scales. “We’re not at therapeutic levels yet,” says Schwarz.

The professors note that creativity is essential to this stage of research—in imagining what might be possible and what new questions to ask, and in pushing the boundaries of existing scientific language. To that end, they have incorporated broader outreach between the physics and creative writing departments in their project.

In a collaboration with creative writing professors Ի , along with M.F.A. candidate , students from both departments will cross over and embed in their respective classes. “[They’ll see] how a piece of poetry is creative, for example. Then, how a certain experiment is creative,” says Schwarz. “We want to get physicists thinking like creative writers, and vice versa.”

The colleagues like to think that students and their work will benefit from the exercise, not only in expanding their ideas of what is possible but also in taking a more thoughtful approach to the language they use. Instead of talking about hierarchy of scales,” says Patteson, “maybe we should be talking about coupled things, or partnerships.” A simple shift in perspective, after all, can sometimes put things in a whole new light.

Story by Laura Wallis

  • Author

News Staff

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to ϲ in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 ϲ. All Rights Reserved.